No. of Printed Pages : 8

A5-R5 : Data Structure Through Object Oriented Programming Language

DURATION : 03 Hours	MAXIMUM MARKS : 100							
	OMR Sheet No. :							
Roll No. : An	swer Sheet No. :							
Name of Candidate :	_; Signature of Candidate :							
INSTRUCTIONS FOR	CANDIDATES :							
Carefully read the instructions given on Question Pap	Carefully read the instructions given on Question Paper, OMR Sheet and Answer Sheet.							
Question Paper is in English language. Candidate ha	as to answer in English language only.							
There are TWO PARTS in this Module/Paper. PAR TWO contains FIVE questions.	 There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 							
• PART ONE is Objective type and carries 40 Marks. PART TWO is Subjective type and carries 60 Marks.								
 PART ONE is to be answered in the OMR ANSWER SHEET only, supplied with the question paper, as per the instructions contained therein. PART ONE is NOT to be answered in the answer book for PART TWO. 								
 Maximum time allotted for PART ONE is ONE HOUR. Answer book for PART TWO will be supplied at the table when the Answer Sheet for PART ONE is returned. However, Candidates who complete PART ONE earlier than one hour, can collect the answer book for PART TWO immediately after handing over the Answer Sheet for PART ONE to the Invigilator. 								
Candidate cannot leave the examination hall/room without signing on the attendance sheet								
and handing over his/her Answer Sheet to the invigilator. Failing in doing so, will amount to disqualification of Candidate in this Module/Paper.								
After receiving the instruction to open the booklet and should ensure that the Question Booklet is complete	3							

DO NOT OPEN THE QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO.

	PART - ONE	1.4	What is time complexity of fun() ?			
(Answer all the questions; each question			~			
1.	carries ONE mark) 1. Each question below gives a multiple choice of answers. Choose the most appropriate one and enter in the "OMR" answer sheet supplied with the question paper, following instructions therein. (1x10)		<pre>int fun(int n) { int count = 0; for (int i = n; i > 0; i /= 2)</pre>			
			for (int j = 0; j < i; j++)			
1.1	In C++, a member function can always access		count += 1;			
	the data in		return count;			
	(A) the class of which it is a member(B) the object of which it is a member					
	(C) the public part of its class		}			
	(D) the private part of its class		(A) $O(n^2)$			
	Which of the following is/are automatically added to every class if we do not write our		(B) O(nLogn)			
1.2			(C) O(n)			
	own ?		(D) O(nLognLogn)			
	(A) Copy Constructor (B) Assignment Operator					
	(B) Assignment Operator(C) A constructor without any parameter					
	(D) All of the above	1.5	The average number of key comparisons done in a successful sequential search in a list of			
			length it is			
1.3	What is the output of the following program ?		(A) log n			
	<pre>#include<iostream> using namespace std; class Point { Point() {cout << "Constructor called";}</iostream></pre>		(B) $(n-1)/2$			
			(C) $n/2$			
	};		(D) $(n+1)/2$			
	int main()					
	{ Point t1; return 0;		The recurrence relation that arises in relation			
			with the complexity of binary search is :			
	}		(A) $T(n) = 2T(n/2) + k$, where k is constant			
	(A) Compiler Error		(B) $T(n) = T(n / 2) + k$, where k is constant			
	(B) Runtime Error		(C) $T(n) = T(n / 2) + \log n$			
	(C) Constructor called(D) Constructor called Constructor called		(D) $T(n) = T(n / 2) + n$			
			· · · · · · · ·			
Page	2 SPACE FOR R	OUG	H WORK A5-R5/07-24			

- **1.7** What is the worst-case time complexity of Quicksort ?
 - (A) O(n^2)
 - (B) O(nLogn)
 - (C) O(n)
 - (D) O(nLognLogn)
- **1.8** The level of a node is the distance from the root to that node. For example, the level of the root is 1, and the level of the left and right children of the root are 2. The maximum number of nodes on level i of a binary tree is :
 - (A) $2^{(i)} 1$
 - (B) 2^i
 - (C) 2^(i+1)
 - (D) 2^[(i+1)/2]
- **1.9** The inorder and preorder traversal of a binary tree are d b e a f c g and a b d e c f g, respectively. The postorder traversal of the binary tree is :
 - (A) edbgfca
 - (B) debfgca
 - (C) edbfgca
 - (D) defgbca
- **1.10** Given an undirected graph G with V vertices and E edges, the sum of the degrees of all vertices is :
 - (A) E
 - (B) 2E
 - (C) V
 - (D) 2V

- 2. Each statement below is either TRUE or FALSE. Choose the most appropriate one and enter your choice in the "OMR" answer sheet supplied with the question paper, following instructions therein. (1x10)
- **2.1** Members of a class are private by default.
- **2.2** Every class containing an abstract method must be declared abstract.
- **2.3** A class in C++ takes up space in memory and has an associated address.
- **2.4** Destructors can be virtual in C++.
- **2.5** A copy constructor may be called when an object is constructed based on another object of the same class.
- **2.6** In a linked list implementation of stack, if new nodes are inserted at the beginning of the linked list, then nodes must be removed from the end.
- **2.7** In a linked list implementation of a queue, if new nodes are inserted at the end, then nodes must be removed from the beginning.
- **2.8** A full binary tree is one in which every node other than the leaves has two children.
- **2.9** Random access is allowed in a typical implementation of Linked Lists.
- **2.10** A graph is a linear data structure with vertices and edges.

Page 3

SPACE FOR ROUGH WORK

A5-R5/07-24

3. Match words and phrases in column X with the closest related meaning / word(s) / phrase(s) in column Y. Enter your selection in the "OMR" answer sheet supplied with the question paper, following instructions therein. (1x10)

	X	Y			
3.1	Reusability	A Divide and Conquer			
3.2	Operator Overloading	B Queue			
3.3	Quick Sort	C Stack			
3.4	Breadth First Search	D	D Inheritance		
3.5	Depth First Search	Е	Dynamic data structure		
3.6	Self balancing search tree	F	Polymorphism		
3.7	Linked List	G	Non linear data structure		
3.8	Graph	H B Tree			
3.9	Binary Search	I O(n ²)			
3.10	Selection sort	J	O(log n)		
		К	С		
		L			
		М	Static Data Structure		

SPACE FOR ROUGH WORK

A5-R5/07-24

4. Each statement below has a blank space to fit one of the word(s) or phrase(s) in the list below. Choose the most appropriate option, enter your choice in the "OMR" answer sheet supplied with the question paper, following instructions therein. (1x10)

А.	O(V^2)	В.	B Tree	C.	Asymptotic analysis	D.	Class
Е.	Encapsulation	F.	O(n ²)	G.	?: (conditional)	н.	Object
I.	O(n log n)	J.	O(n)	К.	Stack	L.	Queue
М.	Out-Degree						

- **4.1** A ______ is a user-defined data type that has data members and member functions.
- **4.2** ______ is an identifiable entity with some characteristics and behaviour.
- **4.3** _______ is defined as wrapping up of data and information under a single unit.
- **4.4** For a sparse graph G(V, E), adjacency matrix consumes ______ space.
- **4.5** _______ is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time.
- **4.6** ______ operator can't be overloaded in C++.
- **4.7** ______ of an algorithm refers to defining the mathematical boundation/framing of its run-time performance.

4.8 Best-case time complexity of Bubble sort algorithm is _____.

- **4.9** Worst-case time complexity of Mergesort algorithm is ______.
- 4.10 _____ data structure is used to evaluate postfix expressions.

Page 5

SPACE FOR ROUGH WORK

A5-R5/07-24

8.

(b)

PART - TWO

(Answer any FOUR questions)

(a) What is an abstract class, and why is it

Write a code in C++ for the addition of

two 2-D matrices of size 3×3 of integers.

(6+9)

used?

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK