C0-R4.B1 : ELEMENTS OF MATHEMATICAL SCIENCES

NOTE :

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Total Time : 3 Hours

Total Marks : 100

1. (a) Show that the matrix $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ is a solution of the equation $A^2 - 5A + 7I = O$, Where I is 2×2 identity matrix.

(b) Find
$$\frac{dy}{dx}$$
 if $y = \cos(x^x)$

(c) Evaluate :
$$\int \sqrt{1 - \sin x} \, dx$$
.

- (d) Verify the mean value theorem for $f(x) = 2x^2 7x + 10$ in [2, 5].
- (e) Find the value of P for which the Vector $\vec{A} = 3\hat{i} \hat{j} + 4\hat{k}$ and Vector $\vec{B} = P\hat{i} + 3\hat{j} + \hat{k}$ are perpendicular.
- (f) A fair die is rolled. Consider the following events A = {2, 4, 6}, B = {4, 5} and C = {3, 4, 5, 6}. Find P(A \cup BIC) and P(A \cap BIC)

(g) Find the Eigen values of the matrix
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$$
 (7x4)

2. (a) Examine the continuity of the function f(x) defined by

$$f(x) = \begin{cases} 5x - 4, & \text{if } 0 < x \le 1\\ 4x^3 - 3x, & \text{if } 1 < x < 2 \end{cases} \quad \text{At } x = 1$$

(b) Find the rank of the matrix.

$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$$

(c) Find $\frac{dy}{dx}$ of following. (i) $y = \sin(e^{\tan x})$ (ii) $y = \sec^2(\tan^{-1}x)$ (4+5+9) **3.** (a) Find the probability distribution of number of doublets in three throws of a pair of dice.

(b) Prove that
$$\begin{bmatrix} b + c & a + b & a \\ c + a & b + c & b \\ a + b & c + a & c \end{bmatrix} = a^3 + b^3 + c^3 - 3abc$$

(c) Evaluate :
$$\int \frac{x}{(x-2)(x-1)^2} dx$$
 (6+6+6)

4. (a) Show the system of equation x + 2y + 3z = 11; x - 2y + 3z = 3 and x + 2y - 3z = -1 is consistent and find the solution.

(b) Evaluate :
$$\lim_{x \to 0} (1+x)^{1/x}$$

(c) Sketch the graph of
$$y = |x+3|$$
 and evaluate $\int_{-6}^{0} |x+3| dx$ (6+6+6)

5. (a) Discuss the convergences of following series.

$$1 + \frac{2^1}{2!} + \frac{3^2}{3!} + \frac{4^3}{4!} + \dots \infty$$

(b) Find regression equation of β on α and estimate β when $\alpha = 55$ from the following data :

α	40	50	38	60	65	50	35
β	38	60	55	70	60	48	30

- (c) A sample of 144 transistors manufactured by a company is found to have an average life of 1450 days with a standard deviation of 100 days. Establish 90% confidence limits within which the mean lifetime of a transistor is expected to lie. The significant value at 10% is $Z\alpha/2=1.645$. (6+6+6)
- **6.** (a) Use Cramer's rule to solve the following system of equations.

x - y - z = 1, y - z - x = 1, z - x - y = 1

(b) Find the equation of a circle which passes through (2, -3) and (-4, 5) and having center on the line 4x + 3y + 1 = 0.

(c) Find the angle between the vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = \hat{i} - \hat{j} + \hat{k}$. (6+6+6)

7. (a) In a factory, machines A, B and C produce 60%, 30% and 10% of certain items respectively. 1%, 2% and 3% of the item produced respectively by A, B and C are found to be defective. A certain item is picked up at random from the total production and found to be defective. Find the probability that defective item is produced by machine A.

(b) Prove that
$$\int_0^{\frac{\pi}{4}} \log_e(1 + \tan x) \cdot dx = \frac{\pi}{8} \cdot \log_{e2}$$

(c) Test the convergence of series :

$$\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \dots \infty$$
 (6+6+6)

- o O o -