No. of Printed Pages : 11

Sl. No.

B2.1-R5 : COMPUTER BASED NUMERICAL AND STATISTICAL METHODS

NOTE :

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.
- 3. Probability Tables are allowed.
- 4. Only Non-programmable and Non-storage type Scientific Calculator is allowed.

|--|

Total Marks : 100

- (a) The time taken by the driver to react to the brake is normally distributed having mean value 1.25 second and standard deviation of 0.46 second. What is the probability that reaction time of the driver is in between 1 second and 1.75 second ?
 - (b) Let X denote the number of traps (defects of a certain kind) in a particular type of metal oxide semiconductor transistor, and suppose it has a Poisson distribution with mean 2. What is the probability that there are exactly three traps and the probability that there are at most three traps ?
 - (c) Suppose 25% of all students at a large public university receive the financial aid. Let X be the number of students in a random sample of size 50. Then what is the probability that at most 10 students receive financial aid ?
 - (d) A coin was tossed 400 times and the head turned up 212 times. Test the hypothesis that the coin is unbiased.
 - (e) The nine items of a sample have the following values 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these values differ significantly from the assumed mean 47.5 ?
 - (f) The regression lines of *y* on *x* and *x* on *y* are respectively y = ax + b, x = cy + d. Shown that

$$\frac{\sigma_y}{\sigma_x} = \frac{\sqrt{a}}{c}, \ \bar{x} = \frac{bc+d}{1-ac} \ \text{and} \ \bar{y} = \frac{ad+b}{1-ac}$$

(g) Using the Taylor's Series, find y(0.1) correct to four decimal places if y(x) satisfies the initial value problem $\frac{dy}{dx} = x - y^2$ and y(0) = 1. Also find y(0.2).

(7x4)

(a) A news magazine publishes three columns entitled Art (A), Books (B), Cinema (C). Reading habits of a randomly selected reader with respect to these columns are :

Read Regularly	А	В	С	$A \cap B$	$A \cap C$	$B \cap C$	$A \cap B \cap C$
Probabilities	0.14	0.23	0.37	0.08	0.09	0.13	0.05

- (i) The probability that the selected individual regularly reads the Art column given that he or she regularly reads atleast one of the other two columns.
- (ii) The probability that the selected individual regularly reads the Art column given that he or she reads atleast one of the given columns.
- (iii) The probability that the selected individual reads atleast one of the first two columns given that he or she reads the cinema column.
- (b) An electronic store sells three different brands of DVD players. Among the sales, 50% are brand 1, 30% are brand 2, and 20% are brand 3. Each manufacturer offers a 1-year warranty on parts and labor. It is known that 25% of brand 1 DVD players require warranty repair work, whereas the corresponding percentages for brand 2 and 3 are 20% and 10%. Find :
 - (i) What is the probability that a randomly selected purchaser has bought a brand 1 DVD player that will need repair while under warranty ?
 - (ii) What is the probability that a randomly selected purchaser has a DVD player that will need repair while under warranty ?
 - (iii) If a customer returns to the store with a DVD player that needs warranty repair work, what is the probability that it is a brand 1 DVD player ? (9+9)
- 3. (a) An auditor claims that 8% of customer ledger accounts are carrying mistakes of posting and balancing. A random sample of 500 was taken to test the accuracy of posting and balancing and 20 mistakes were found. Are these sample results consistent with the claim of auditor ? (Use 5% level of significance)
 - (b) A machine produced 15 defective articles in a batch of 500. After overhauling it produced 2 defectives in a batch of 100. Has the machine improved ? Validate statistically.
 - (c) The mean weight obtained from a random sample of size 100 is 60 gms. The standard deviation of the weight distribution of the population is 3 gms. Test the statement that the mean weight of the population is 65 gms at 5% level of significance. Also set up 99% confidence limits of the mean weight of the population. (6+6+6)

4. (a) When the first proof of 392 pages of a book of 1200 pages were read, the distribution of printing mistakes were found to be as follows :

No. of mistakes in a page (<i>x</i>)	0	1	2	3	4	5	6
No. of pages (f)	275	72	30	7	5	2	1

Fit a Poisson distribution to the above data and test the goodness of fit.

(b) Determine the constants a and b by the method of Least Squares such that $y = ae^{bx}$ fits the following data :

x	2	4	6	8	10
y	4.077	11.084	30.128	81.897	222.62

- 5. (a) Find a positive real root of $x \cos x = 0$ by bisection method, correct up to four decimal places between 0 and 1.
 - (b) Using the method of false position, find the root of equation $x^6 x^4 x^3 1 = 0$ correct up to four decimal places. (9+9)
- 6. (a) Show that the equation $f(x) = \cos\left[\frac{\pi(x+1)}{8}\right] + 0.148x 0.9062 = 0$ has one root in the interval (-1, 0) and one in (0, 1). Calculate the root correct to four decimal places using Newton-Raphson method.
 - (b) Solve the following system of equations using the Jacobi Iterative method : 4x + y + 3z = 17, x + 5y + z = 14, 2x - y + 8z = 12 (8+10)
- 7. (a) Evaluate $I = \int_0^2 \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}^{rd}$ rule. How long should n be chosen in order to ensure that $|E| \le 5 \times 10^{-6}$?
 - (b) If Trapezoidal rule is to be used to compute $\int_0^1 e^{-x^2} dx$ with an error at most $\frac{1}{2} \times 10^{-4}$, then how many points should be used to get desired accuracy ?
 - (c) By the use of the Newton's Divided Difference formula find the f'(1.3) and f''(1.3) from the following table :

x	1.0	1.2	1.4	1.6	1.8	2.0
f(x)	0.0	0.1280	0.5540	1.2960	2.4320	4.0

(6+6+6)

Areas Under the Standard Normal Curve from 0 to z

2	0	1	2	3	4	5	6	7	8	9
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0754
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2258	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2518	.2549
0.7	.2580	.2612	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2996	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	-3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	4357	4370	4382	4394	.4406	4418	4429	4441
1.6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1.7	.4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1.8	.4641	4649	4656	4664	4671	4678	4686	4693	4699	4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	4808	4812	.4817
2.1	.4821	.4826	.4830	.4834	4838	.4842	.4846	4850	4854	4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4854	4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	4943	.4945	.4946	.4948	4949	4951	4952
2.6	.4953	.4955	.4956	.4957	4959	.4960	.4961	4962	4963	4964
2.7	4965	.4966	4967	4968	4969	.4970	.4971	.4972	4973	.4974
2.8	.4974	.4975	4976	4977	4977	.4978	.4979	.4979	4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	4988	4988	.4989	4989	4989	.4990	4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	4992	.4993	4993
3.2	.4993	.4993	.4994	.4994	4994	.4994	.4994	.4995	4995	4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	4996	4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	4998	.4998	4998
3.6	.4998	.4998	.4999	.4999	.4999	4999	.4999	4999	4999	.4999
3.7	4999	4999	4999	4999	4999	4999	4999	4999	4999	4999
3.8	4999	4999	4999	4999	4999	4999	4999	4999	4999	4999
			12050							

Page 4

B2.1-R5/01-24

Percentile Values (t_p) for Student's t Distribution with ν Degrees of Freedom (shaded area = p)

P	t.995	É.99	t.975	t.85	t.00	t.80	t.75	t.70	t.50	t.ss
1	63.66	31.82	12.71	6.31	3.08	1.376	1.000	.727	.325	.158
2	9.92	6.96	4.30	2.92	1.89	1.061	.816	.617	.289	.142
3	5.84	4.54	3.18	2.35	1.64	.978	.765	.584	.277	.137
4	4.60	3.75	2.78	2.13	1.53	.941	.741	.569	.271	.134
5	4.03	3.36	2.57	2.02	1.48	.920	.727	.559	.267	.132
6	3.71	3.14	2.45	1.94	1.44	.906	.718	.553	.265	.131
7	8.50	3.00	2.36	1.90	1.42	.896	.711	.549	.263	.130
8	3.36	2.90	2.31	1.86	1.40	.889	.706	.546	.262	.130
9	3.25	2.82	2.26	1.83	1.38	.883	.703	.543	.261	.129
					,					
10	3.17	2.76	2.23	1.81	1.37	.879	.700	.542	.260	.129
11	3.11	2.72	2.20	1.80	1.36	.876	.697	.540	.260	.129
12	3.06	2.68	2.18	1.78	1.36	.873	.695	.539	.259	.128
13	3.01	2.65	2.16	1.77	1.35	.870	.694	.538	.259	.128
14	2.98	2.62	2.14	1.76	1.34	.868	.692	.537	.258	.128
15	2.95	2.60	2.13	1.75	1.34	.866	.691	.536	.258	.128
16	2.92	2.58	2.12	1.75	1.34	.865	.690	.535	.258	.128
17	2.90	2.57	2.11	1.74	1.33	.863	.689	.534	.257	.128
18	2.88	2.55	2.10	1.73	1.33	.862	.688	.534	.257	.127
19	2.86	2.54	2.09	1.73	1.33	.861	.688	.533	.257	.127
20	2.84	2.53	2.09	1.72	1.32	.860	.687	.533	.257	.127
21	2.83	2.52	2.08	1.72	1.32	.859	.686	.532	.257	.127
22	2.82	2.51	2.07	1.72	1.32	.858	.686	.532	.256	.127
23	2.81	2.50	2.07	1.71	1.32	.858	.685	.532	.256	.127
24	2.80	2.49	2.06	1.71	1.32	.857	.685	.531	.256	.127
								÷.		
25	2.79	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.127
26	2.78	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.127
27.	2.77	2.47	2.05	1.70	1.31	.855	.684	.531	.256	.127
28	2.76	2.47	2.05	1.70	1.31	.855	.683	.530	.256	.127
29	2.76	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.127
30	2.75	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.127
40	2.70	2.42	2.02	1.68	1.30	.851	.681	.529	.255	.126
60	2.66	2.39	2.00	1.67	1.30	.848	.679	.527	.254	.126
120	2.62	2.36	1.98	1.66	1.29	.845	.677	.526	.254	.126
80	2.58	2.33	1.96	1.645	1.28	.842	.674	.524	.253	.126

Source: R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (5th edition), Table III, Oliver and Boyd Ltd., Edinburgh, by permission of the authors and publishers.

Percentile Values (χ_p^2) for the Chi-Square Distribution with ν Degrees of Freedom (shaded area = p)

2	x ² .995	x ² .99	X.975	x.95	x ² .90	x.75	x ² .50	x ² .23	x ² .10	x ² .05	x ² .025	X ² ,01	X ² .005
1	7.88	6.63	5.02	3.84	2.71	1.32	.455	.102	.0158	.0039	.0010	.0002	.0000
2	10.6	9.21	7.38	5.99	4.61	2.77	1.39	.575	.211	.103	.0506	.0201	.0100
3	12.8	11.3	9.35	7.81	6.25	4.11	2.37	1.21	.584	.352	.216	.115	.072
4	14.9	13.3	11.1	9.49	7.78	5.3 9	3.36	1.92	1.06	.711	.484	.297	.207
5	16.7	15.1	12.8	11.1	9.24	6.63	4.35	2.67	1.61	1.15	.831	.554	.412
6	18.5	16.8	14.4	12.6	10.6	7.84	5.35	3.45	2.20	1.64	1.24	.872	.676
7	20.3	18.5	16.0	14.1	12.0	9.04	6.35	4.25	2.83	2.17	1.69	1.24	.989
8	22.0	20.1	17.5	15.5	13.4	10.2	7.34	5.07	3.49	2.73	2.18	1.65	1.34
9	23.6	21.7	19.0	16.9	14.7	11.4	8:34	5.90	4.17	3.33	2.70	2.09	1.73
10	25.2	23.2	20.5	18.3	16.0	12.5	9.34	6.74	4.87	3.94	8.25	2.56	2.16
11	26.8	24.7	21,9	19.7	17.3	13.7	10.3	7.58	5.58	4.57	3.82	8.05	2.60
12	28.3	26.2	23.3	21.0	18.5	14.8	11.3	8.44	6.30	5.23	4.40	8.57	3.07
13	29.8	27.7	24.7	22.4	19.8	16.0	12.3	9.30	7.04	5.89	5.01	4.11	3.57
14	31.3	29.1	26.1	23.7	21.1	17.1	18.3	10.2	7.79	6.57	5.63	4.66	4.07
15	32.8	30.6	27.5	25.0	22.3	18.2	14.3	11.0	8.55	7.26	6.26	5.23	4.60
16	34.3	32.0	28.8	26.3	23.5	19.4	15.3	11.9	9.31	7.96	6.91	5.81	5.14
17	35.7	33.4	30.2	27.6	24.8	20.5	16.3	12.6	10.1	8.67	7.56	6.41	5.70
18	37.2	34.8	31.5	28.9	26.0	21.6	17.8	13.7	10.9	9.39	8.23	7.01	6.26
19	38 .6	36.2	32.9	30.1	27.2	22.7	18.3	14.6	11.7	10.1	8.91	7.63	6.84
20	40.0	37.6	34.2	81.4	28.4	23.8	19.3	15.5	12.4	10.9	9.59	8.26	7.43
21	41.4	38.9	85.5	32.7	29,6	24.9	20.3	16.3	13.2	11.6	10.3	8.90	8.03
22	42.8	40.3	36.8	83.9	80.8	26.0	21.3	17.2	14.0	12.3	11.0	9.54	8.64
.23	44.2	41.6	38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10.2	9.26
24	45.6	43.0	89.4	36.4	33.2	28.2	23.8	19.0	15.7	13.8	12.4	10.9	9.89
25	46.9	44.3	40.6	37.7	84.4	29.3	24.3	19.9	16.5	14.6	13.1	11.5	10.5
26	48.3	45.6	41.9	38.9	35.6	80.4	25.3	20.8	17.3	15.4	13.8 ·	12.2	11.2
27	49.6	47.0	43.2	40.1	86.7	\$1.5	26.3	21.7	18.1	16.2	14.6	ì2.9 .	11.8
28	51.0	48.3	44.5	41.3	37.9	32.6	27.8	22.7	18.9	16.9	15.3	13.6	12.5
29	52.3	49.6	45.7	42.6	39.1	33.7	28.3	23.6	19.8	17.7	16.0	14.3	18.1
80	53.7	50.9	47.0	43.8	40.3	34.8	29.3	24.5	20.6	18.5	16.8	15.0	13.8
40	66.8	63.7	59.3	55.8	51.8.	45.6	39.3	83.7	29.1	26.5	24.4	22.2	20.7
50	79.5	76.2	71.4	67.5	63.2	56.3	49.3	42.9	37.7	34.8	32.4	29.7	28.0
60	92.0	88.4	83.3	79.1	74.4	67.0	59.8	52. 3	46.5	43.2	40.5	87.5	85.5
70	104.2	100.4	95.0	90.5	85.5	77.6	69.3	61.7	55.3	51.7	48.8	45.4	43.3
80	116.3	112.3	106.6	101.9	96,6	88.1	79.3	71.1	64.3	60.4	57.2	58.5	51.2
90	128.3	124.1	118.1	113.1	107.6	98.6	89.3	80.6	73.3	69.1	65.6	61.8	59.2
100	140.2	135.8	129.6	124.3	118.5	109.1	99.3	90.1	82.4	77.9	74.2	70.1	67.3

Source: Catherine M. Thompson, Table of percentage points of the χ^2 distribution, Biometrika, Vol. 32 (1941), by permission of the author and publisher.

95th Percentile Values for the *F* Distribution (v_1 degrees of freedom in numerator) (v_2 degrees of freedom in denominator)

¥1 ¥2	1	2	8	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	8
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3,15	3.12	3.08	3.04	3.01	2.97	2.98
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2,54
11	4.84	3.98	3.59	3.36	3.20	8.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3 68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1,98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.78
25	4.24	3.39	2,99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1,77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
æ	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 178, by permission.

99th Percentile Values for the F Distribution (v_1 degrees of freedom in numerator) (v_2 degrees of freedom in denominator)

¥2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	8
1	4052	5000	5403	5625	5764	5859	5928	5981	6023	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5	99.5
3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	26.9	26.7	26.6	26.5	26.4	26.3	26.2	26.1
4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.2	14.0	13.9	13.8	13.7	13.7	13.6	13.5
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
. 6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3,80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
43 94	7.00	0.00	4,70	4.20	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	7.77	5.57	4.12	4.22	3.90	3.07	3.00	3.36	3.26	3.17	3.03	2.89	2.14	2.00	2.08	2.49	2.40	2.31	2.21
20	7 79	5.59	4.00	4.10	0.00	3.03	3.40	3.32	3.22	3.13	2.99	2.80	2.10	2.02	9 50	2.40	4.00 n 09	0.09	019
97	7 60	5.00	4.04	4.14	3.84	3.09	3.42	3.29	3.18	3.09	2.96	2.82	2.00	2.98	2.00	2.42	2.00	0.00	2.10
90	7.64	5.45	4.00	4.11	3.70	3.00	3.39	3.20	3.15	3.00	2.93	2.10	2.03	2.00	2.41	4.00	4.40 0.00	0.17	0.00
20	7.60	5 49	4.01	4.07	9.79	2.50	0.00	3.23	3.12	3.03	2.90	2.10	2.00	9.40	0.44	0.00	0.02	914	2.00
30	7.56	5 30	4.54	4.02	2 70	9.47	0.00	3.20	3.09	0.00	0.01	2.10	9.55	9 47	0 20	2.00	0.01	0 11	2.00
40	7.31	5 18	4 31	3 83	3 51	3 20	2 19	2 00	2 80	2.00	2.04	2.10	2.00	2 20	2 20	9 11	2.02	1 92	1.80
60	7.08	4.98	413	3.65	3 34	319	2.95	2 80	979	262	2 50	2 35	2 20	219	2.02	1.94	1.84	1.73	1.60
120	6.85	4.79	3.95	3.48	3.17	2.96	2.70	2.66	2.14	2.00	2.34	219	2.02	1 95	1 86	1 76	1.66	1.53	1.88
80	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2 51	2.41	2.39	218	2.04	1.82	1 79	1 70	1.59	1.47	1.82	1.00
				5.52			2.01	01	w. 21	2.02		2.01	1.00			1.00			1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 180, by permission.

Values of e^{-A}

(0 < \lambda < 1)

~	0	1	2	~	4	5	9	7	00	6
									·	
00	1 0000	. 0000	0000	0104	GEAR	9512	9418	9324	.9231	9139
2	10001	0000	3000						0100	
0.1	.9048	.8958	.8869	.8781	.8694	.8607	1268.	8451	.8353	.8270
0.2	.8187	.8106	.8025	.7945	.7866	.7788	1177.	.7634	.7558	.7483
0.3	.7408	.7334	.7261	.7189	.7118	.7047	7769.	2069.	.6839	1773.
0.4	.6703	.6636	.6570	.6505	.6440	.6376	.6313	.6250	.6188	.6126
0.5	.6065	.6005	.5945	.5886	.5827	.5770	.5712	.5655	.5599	.5543
0.6	5488	.5434	.5379	.5326	.5273	.5220	.5169	.5117	.5066	5016
0.7	.4966	.4916	.4868	.4819	.4771	.4724	.4677	.4630	.4584	.4538
0.8	.4493	4449	4404	.4360	.4317	.4274	.4232	.4190	.4148	.4107
0.9	.4066	.4025	.3985	.3946	.3906	.3867	.3829	3791	.3753	.3716
				Y)	= 1, 2, 3,	. 10)				2

Note: To obtain values of $e^{-\lambda}$ for other values of λ , use the laws of exponents.

.000045

.000123

.000335

.000912

.002479

.006738

.01832

04979

.13534

.36788

ĩ

2

6

œ

-

9

ŝ

-

3

2

~

Example: $e^{-3.48} = (e^{-3.00})(e^{-0.44}) = (0.04979)(0.6188) = 0.03081.$

Ċ

One-Sie	ded Te	st :										
$\alpha =$.10	.05	.025	.01	.005	α	=	.10	.05	.025	.01	.005
Two-Si	ded Te	st :										
$\alpha =$.20	.10	.05	.02	.01	α	=	.20	.10	.05	.02	.01
n = 1	.900	.950	.975	.990	.995	n =	= 21	.226	.259	.287	.321	.344
2	.684	.776	.842	.900	.929		22	.221	.253	.281	.314	.337
3	.565	.636	.708	.785	.829		23	.216	.247	.275	.307	.330
4	.493	.565	.624	.689	.734		24	.212	.242	.269	.301	.323
5	.447	.509	.563	.627	.669		25	.208	.238	.264	.295	.317
6	.410	.468	.519	.577	.617		26	.204	.233	.259	.290	.311
7	.381	.436	.483	.538	.576		27	.200	.229	.254	.284	.305
8	.358	.410	.454	.507	.542		28	.197	.225	.250	.279	.300
9	.339	.387	.430	.480	.513		29	.193	.221	.246	.275	.295
10	.323	.369	.409	.457	.489		30	.190	.218	.242	.270	.290
11	.308	.352	.391	.437	.468		31	.187	.214	.238	.266	.285
12	.296	.338	.375	.419	.449		32	.184	.211	.234	.262	.281
13	.285	.325	.361	.404	.432		33	.182	.208	.231	.258	.277
14	.275	.314	.349	.390	.418		34	.179	.205	.227	.254	.273
15	.266	.304	.338	.377	.404		35	.177	.202	.224	.251	.269
16	.258	.295	.327	.366	.392		36	.174	.199	.221	.247	.265
17	.250	.286	.318	.355	.381		37	.172	.196	.218	.244	.262
18	.244	.279	.309	.346	.371		38	.170	.194	.215	.241	.258
19	.237	.271	.301	.337	.361		39	.168	.191	.213	.238	.255
20	.232	.265	.294	.329	.352		40	.165	.189	.210	.235	.252
				Approx	ximation			1.07	1.22	1.36	1.52	1.63
				For n >	> 40			\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}

Table 7. Critical Values of the Kolmogorov-Smirnov One Sample TestStatistics This table gives the values of $D_{n.a}^+$ and $D_{n.a}$ for which $\alpha \ge P\{D_n^+ > D_{n.a}^+\}$ and $\alpha \ge P\{D_n^- > D_{n.a}^-\}$ for some selected values of *n* and *a*.

Source. Adapted by permission from Table 1 of Leslie H. Miller. Table of Percentage points of Kolmogorov statistics, J. Am. Stat. Assoc. 51 (1956). 111-121.

SPACE FOR ROUGH WORK