NOTE:

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

- 1.
- a) What do you mean by a language of a grammar G? Give an example.
- b) When a grammar is said to be ambiguous?
- c) What are regular languages? Define a regular expression.
- d) What is meant by Empty Production removal in PDA?
- e) What is an incremental compiler? Enlist the basic features of incremental compiler.
- f) What are the benefits of using machine-independent intermediate form?
- g) What are the limitations of using static allocation?

(7x4)

2.

- a) Show that *R* is an equivalence relation in the following questions.
 - i) R is the relation on the set of ordered pairs of positive integers such that (a,b), $(c,d) \in R$ whenever ad = bc.
 - ii) *R* is the relation on the set of positive integers such that (*a*,*b*) \mathcal{E} *R* if and only if *ab* is a perfect square.
- b) Use mathematical induction to prove that $n^3 + (n + 1)^3 + (n + 2)^3$ is divisible by 9, for $n \ge 0$.
- c) Solve the recurrence relation $a_n 2a_{n-1} = 3^n$; $a_1 = 5$.

(6+6+6)

- 3.
- a) Design a finite state automaton that accepts the string of natural numbers (0 through 9) which are divisible by 3.
- b) Compare a Mealy machine with a Moore machine. Construct a Mealy machine which is equivalent to the Moore machine given in the table below.

Present state	Next state		Output
	a = 0	a = 1	
q0 q1 q2	q3 q1 q2	q1 q2 q3	0 1 0
(q3)	q3	0p	0

(9+9)

4.

- a) Find a reduced grammar equivalent to the grammar G whose productions are:
 - $S \rightarrow AB \mid CA, B \rightarrow BC \mid AB, A \rightarrow a, C \rightarrow aB \mid b$
- b) Design a PDA that accepts $L = \{w \mid n_a(w) = 2n_b(w)\}$ or all strings over (a,b) in which the number of *a*'s is twice the number of *b*'s.

(9+9)

«QP_SRLNO»

Total Marks: 100

5.

- a) Construct a Turing machine with tape symbols 0, 1 and B that will replace all 0's in the bit string with 1's and will not change any of the 1's in the bit string.
- b) If L_1 and L_2 are recursively enumerable languages over \sum , then prove that $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable.
- c) Define passes of a compiler. Which are the factors that decide number of passes for a compiler?

(9+6+3)

6.

a) Consider the following grammar for postfix expressions:

$$E \rightarrow EE + E \rightarrow EE^* + E \rightarrow num$$

- i) Eliminate left recursion in the grammar.
- ii) Do left-factorization of the grammar produced in part i).
- iii) Calculate *Nullable*, *FIRST* for every production and *FOLLOW* for every non-terminal in the grammar produced in part ii).
- iv) Make a LL(1) parse-table for the grammar produced in part ii).
- b) What is a marker non-terminal symbol? Write a translation scheme to convert an infix expression to postfix form such that all actions appear at the end of the right hand side of production.

(12+6)

7.

- a) Explain why a left-recursive grammar cannot be parsed using the predictive top-down parsing algorithms?
- b) What are the criteria that need to be considered while applying the code optimization? Give the criteria for achieving machine dependent and machine independent optimization.
- c) Create symbol table as list for the following program:

(6+6+6)