NOTE:

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

«QP SRLNO»

1.

- a) Using the set identities or Venn diagram show that $(A B) C = A (B \cup C)$.
- b) Find the probability, that a family with five children does not have a boy, if the sexes of children are independent and if the probability of a boy is 0.51.
- c) In how many ways can three disciplinary subjects be selected from the two groups of 6 subjects each, if at least one subject must be selected from each group?
- d) Let f be a function from A={x | x is real and x >= -1} to B={x | x is real and x >= 0} given by $f(a) = \sqrt{(a+1)}$. Find f⁻¹.
- e) Find whether the following Propositional formula is a Tautology, Contradiction or else: You may use truth table.

$$\neg (p \land (q \lor p)) \leftrightarrow p$$

- f) Let A = { $x \in R | x \neq 2$ } and B = { $x \in R | x \neq 1$ }. Define f: A \rightarrow B and g: B \rightarrow A by f(x) = x/(x-2, g(x) = 2x/(x-1))
 - i) Find $(f \circ g)(x)$
 - ii) Are f and g inverses? Explain
- g) Find a grammar that generates the language L= $\{a^nb^n | n \ge 1\}$.

(7x4)

2.

- a) Prove by mathematical induction, that the Fibonacci number F_{3n} is divisible by 2.
- b) Define the relation R on the set Z, by aRb if (a b) is a nonnegative even integer. Verify that R defines a partial order. Is this partial order a total order?
- c) Find the domain and range of the following function of a real variable: g(x) = x |x|

(7+7+4)

3.

- a) i) Define the asymptotic notation O (Big "oh"), and Ω (Omega) used to describe the asymptotic running time of algorithm.
 - ii) Prove the following identities:
 - A) $6n^2 / (\log n + 1) = O(n^2)$
 - B) $\log(n!) = O(n \log(n))$
- b) Define \sim on Z by a \sim b if and only if 3a + b is a multiple of 4.
 - i) Prove that ~ defines an equivalence relation.
 - ii) Find the equivalence class of 2.
- c) Show the steps of merge sort algorithm applied to the list: 2, 9, 1, 4, 6, 5, 3.

(7+7+4)

4.

- a) Use mathematical induction to prove that for the recurrence relation $b_n = b_{n-1} + 2b_{n-2}$, $b_1 = 1$, $b_2 = 3$, we have, $b_n < (5/2)^n$.
- b) Let n be a positive integer and let D_n be the set of all positive divisors of n. Draw the Hasse diagrams for D_{30} . Determine whether the Hasse diagram represents a lattice giving reason?
- c) Let A= {a, b, c} and let R and S be relations on A whose matrices are

$$M_{R} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } M_{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Find M_{SoR} and show that $M_{\text{SoR}\,\text{=}}\,M_{\text{R}}\odot\,M_{\text{S}}$

- 5.
- a) In a gathering of 30 people, there are 104 different pairs of people who know each other. Show that some person must have at least seven acquaintances.
- b) How many graphs are there on 4 nodes with degrees 1,1,2,2?
- c) Prove that a planar graph on n nodes has at most 3n-6 edges.

(6+6+6)

- 6.
- a) Twenty varieties of chocolates are available and Shagun wants to buy eight chocolates. How many choices does she have if his brother insists that at least one chocolate should have a cherry center?
- b) Find the minimal sum-of products forms for the Boolean function:

$$F(x,y,z,w)=xy'zw' + x'y'zw' + x'yzw' + x'yzw + xy'z'w'$$

c) Design a finite state machine having an output of 1 exactly when the input string received to that point ends in 101, assuming that the alphabet= { 0,1}.

(6+6+6)

7.

- a) Define group. Show that every group need not be abelion.
- b) What do you mean by order of an element of a group? Find the order of each element of the group $G = \{0, 1, 2, 3, 4, 5\}$ with binary operation: addition module 6.
- c) State Lagrange's theorem and use it to show any group of prime order have no proper subgroup.

(6+6+6)