NOTE:

Answer question 1 and any FOUR from questions 2 to 7.
 Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1.

- a) Find the greatest lower bound and the least upper bound of the sets $\{3, 9, 12\}$ and $\{1, 2, 4, 5, 10\}$ if they exist in the poset $(Z_+, '/')$ where a/b means 'a divides b'.
- b) Write the grammar that generates the set $\{a^n b^{2n} : n \ge 1\}$.
- c) Let $R = \{(x, y) : x, y \in N \text{ and } x + y = 8\}$. Find the domain and range of *R*.
- d) How many positive integers not exceeding 100 are divisible by 4 or 6?
- e) Construct truth table to determine whether $(p \land q) \rightarrow p$ is a tautology.
- f) A non-directed graph *G* has 8 edges. Find the number of vertices, if the degree of each vertex is 2.
- g) Find the generating function for the sequence $\{3^0, 3^1, 3^2, 3^3, \dots, \}$.

(7x4)

2.

- a) Show that if seven colors are used to paint 50 cars, at least eight cars will have the same color.
- b) Let *N* be the set of all natural numbers and let *R* be a relation on $N \times N$ defined by $(a, b) R (c, d) \Leftrightarrow ad = bc$ for all $(a, b), (c, d) \in N \times N$. Show that R is an equivalence relation on $N \times N$.
- c) Determine the validity of the following argument.
 Either I will get good marks or I will not graduate. If I did not graduate I will go to Russia. I get good marks. Thus, I would not go to Russia.

(6+6+6)

- 3.
- a) Prove that fourth root of unity namely $\{1, i, -1, -i\}$ is an abelian group under the set of complex number's.
- b) Obtain the disjunctive normal form of the Boolean expression

$$f(x, y, z) = \{ (x' \lor y') \land z \} \lor \{ x' \land (x \lor z) \}$$

c) What is the greatest common divisor of 119 and 272. Hence, determine their least common multiple.

(6+6+6)

- 4.
- a) Which of the following graphs have an Euler circuit? Of these graphs which do not have Euler circuit, identify the graphs having Euler path. Give reasons.

- b) Use mathematical induction to prove that $7^{2n} + 2^{3n-3} \cdot 3^{n-1}$ is divisible by 25.
- c) Solve the following recurrence relation $a_n = 5a_{n-1} 6a_{n-2}$, where $a_0 = 3$ and $a_1 = 5$.

(6+6+6)

5.

a) For the finite state machine with transition table shown below, find all equivalent states and obtain an equivalent finite state machine with the smallest number of states-

State	Input		Output
	0	1	
А	F	В	0
В	D	С	0
С	G	В	0
D	Е	Α	1
Е	D	Α	0
F	Α	G	1
G	С	Η	1
Н	Α	Η	1

b) Determine a minimum Hamiltonian circuit for the graph, if exists.

6.

- a) Prove that for any a, b in a Boolean Algebra, B
 - i) $a + a \cdot b = a$
 - ii) $a \cdot (a+b) = a$
- b) Determine a * b where $a_r = \begin{cases} 1 & 0 \le r \le 2 \\ 0 & r \ge 3 \end{cases}$ and $b_r = \begin{cases} 1 & 0 \le r \le 2 \\ 0 & r \ge 3 \end{cases}$
- c) Find the order of each of the elements of group, $G = \{0, 1, 2, 3, 4, 5\}$ with the composition being addition modulo 6.

(6+6+6)

7.

a) Sort the following elements in ascending order using merge sort algorithm. Write the steps of the algorithm in detail.

8, 4, 1, 6, 9, 3, 2

b) Use Kruskal's algorithm to find a minimum spanning tree for the weighted graph given below:

(9+9)