NOTE:

Answer question 1 and any FOUR from questions 2 to 7. 1. Parts of the same question should be answered together and in the same 2. sequence.

Time: 3 Hours

Total Marks: 100

1.
a) Evaluate
$$\lim_{x \to 5} \left[\frac{\log x - \log 5}{x - 5} \right]$$
.
b) Differentiate the following function with respect to $x e^{x} \log(1 + x^{2})$.
c) Solve the differential equation $\frac{dy}{dx} + 2x = e^{3x}$.
d) Evaluate $\int \frac{1 - \sin 2x}{x + \cos^{2} x} dx$.
e) Find X if $Y = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ and $2X + Y = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$.
f) Find a unit vector parallel to the vector $(\hat{i} - 2\hat{j})$
g) If $z_{1} = (1 - i)$ and $z_{2} = (-2 + 4i)$ Find $\operatorname{Im}\left(\frac{z_{1}z_{2}}{\overline{z_{1}}}\right)$.
2.
a) Solve the following equations by Cramer's rule $2x + 3y = 10$
 $x + 6y = 4$
b) Find the rank of the matrix by using elementary row operations
 $A = \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \end{bmatrix}$.

$$= \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}.$$

Find the condition for the line y = mx + c touches the parabola $y^2 = 4ax$. c)

(4+8+6)

3.

a) Find the radius and centre of the circle $z\overline{z} - (2+3i)z - (2-3i)\overline{z} + 9 = 0$ where *z* is a complex variable.

Find the point on the curve $y = 2x^2 - 6x - 4$ at which the tangent is parallel to x-axis. b)

c) Find the value of *a* for which the function
$$f(x) = \begin{cases} \frac{1-\cos ax}{x\sin x} & \text{if } x \neq 0\\ \frac{1}{2} & \text{if } x = 0 \end{cases}$$

is continuous at $x = 0$.
(6+6+6)
4.
a) If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$.
b) Evaluate $\int_{0}^{\pi} \log(1+\cos x) dx$.
c) Evaluate $\lim_{x \to 0} \left[\frac{1-x+\log x}{2} \right]$

c) Evaluate
$$\lim_{x \to 1} \left[\frac{1-x+\log x}{1-\sqrt{2x-x^2}} \right]$$
.

(6+6+6)

- 5. a) Find the volume and surface area of the solid generated by revolving the cycloid $x = a(t + \sin t), y = a(1 + \cos t)$ about its base.
- b) Test the convergence of the series $\sqrt{2}$ $\sqrt{3}$ $\sqrt{4}$

$$\frac{1}{1^2+1} + \frac{\sqrt{2}}{2^2+1} + \frac{\sqrt{3}}{3^2+1} + \frac{\sqrt{4}}{4^2+1} + \dots$$
 (9+9)

6.

- a) Find the focus, directrices, eccentricity, latus rectum, and length of the axes of the hyperbola $25x^2 9y^2 = 225$.
- b) Solve the following differential equation

$$y - x\frac{dy}{dx} = x + y\frac{dy}{dx}$$
.

(10+8)

7.

- a) The dot product of a vector with vectors 3i-5k, 2i+7j and i+j+k are respectively -1, 6 and 5. Find the vector.
- b) Find the limit when $n \to \infty$ of the series

$$\frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \frac{n}{(n+3)^2} + \dots + \frac{n}{(n+n)^2}.$$

c) Discuss applicability of Rolle's Theorem for the function $f(x) = |x| \ln[-1, 1]$.

(6+6+6)