NOTE:

Answer question 1 and any FOUR from questions 2 to 7.
 Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1.
a) Express the complex number in the form a+*i*b.

$$\frac{(1-i)(1+2i)}{(4+3i)}$$
b) Find $\lim_{x\to 0} \sqrt{\frac{1+x-1-(\frac{x}{2})}{x^2}}$.
c) Let $A = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$. Find AA^T.
d) Test the convergence of the series $\frac{1}{1+x} + \frac{1}{2+x} + \frac{1}{3+x} + \cdots$
e) Solve the differential equation $x^2 \frac{dy}{dx} = 1 + y$.
f) Find the length of the arc of the parabola $y^2 = 4x$ from (0,0) to (1,2).
g) Using the properties of definite integrals, prove that $\int_{0}^{\pi/2} \frac{\sqrt{\tan x}}{1+\sqrt{\tan x}} dx = \frac{\pi}{4}$.
(7x4)
2.
a) Is the following matrix A invertible? If yes then find the inverse of A, where
 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$
b) Evaluate the integral $\int \frac{dx}{(x^2+1)(x-2)}$.
(8+10)

b) Determine the asymptotes, if any, of the curve $y(x-y)^2 = x + y$

(9+9)

4.

- a) Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.
- b) Expand f(x) $\tan x$ in the powers of $\left(x \frac{\pi}{4}\right)$ upto first three terms using Taylor's series about the

point
$$x = \frac{\pi}{4}$$
.

(9+9)

5. a) Solve the differential equation $\sqrt{1+x^2} + xy \frac{dy}{dx} = 0$.

b) Show that the following function is not differentiable at x=0.

$$f(x) = \frac{x(e^{\frac{1}{x}}-1)}{(e^{\frac{1}{x}}+1)}$$
, $x \neq 0$, $f(0) = 0$.

Is this function continuous at x=0? Discuss.

(10+8)

6.

- a) Find the projection of the vector $6\hat{i} + 3\hat{j} + 2\hat{k}$ onto the vector $\hat{i} 2\hat{j} 2\hat{k}$.
- b) Find the equation of the parabola whose vertex is (0,2) and focus is (0,6).
- c) Find the coordinates of the point where the line $x = \frac{a}{3} + 2t$, y = -2t, z = 1+t Intersects the plane

$$3x + 2y + 6z = 6.$$

(6+6+6)

7.a) Find the eigenvalues of the matrix

<mark>۲2</mark>	1	1]
1	3	2
l_1	1	21

b) Find the equation for the hyperbola centered at origin, with one focus at (3,0) and the line x=1 as the corresponding directrix.

(9+9)