B5.2-R4: AUTOMATA THEORY & COMPILER DESIGN

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.

2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1.

- a) What is the role of semantic analysis and symbol table management in compilers?
- b) Draw stepwise construction of the NFA for the regular expression a (a|b)*ab.
- c) What are the various error recovery strategies used in syntax analysis? Explain each in brief.
- d) What is an activation record used in runtime storage management? What does a typical activation record consist of? What is the role of processor register used in this management?
- e) Compare and contrast triples with indirect triples?
- f) Construct a CFG generating all integers (with sign).
- g) Define formally a Turing machine model. For what purpose are they use?

(7x4)

2.

- a) Prove the following by the principle of induction: 1+4+7+....(3n-2)=n(3n-1)/2.
- b) Prove that the regular expression $R=\Lambda+1^{*}(011)^{*}(1^{*}(011)^{*})^{*}$ also describes the same set of strings.
- c) Consider the Mealy machine describe by the following transition table. Construct a Moore machine equivalent to the Mealy machine.

Present State	Next State			
	Input a=0		Input a=1	
	State	output	State	output
→q0	q3	0	q1	1
q1	q1	1	q2	0
q2	q2	0	q3	0
(q3)	q3	0	q0	0

(5+6+7)

3.

c)

- a) State pumping lemma for regular sets. With the help of pumping lemma, show that the set L= $\{a^{i^2} \mid i \ge 1\}$ is not regular.
- b) Give transition tables for Push Down Automatic (PDA) recognizing the following language:
 - L = the language of all non-palindromes over {a, b}.
 - Convert the following grammar G to Chomsky Normal Form.
 - G→aAD

A→aB|bAB B→b

 $D{\rightarrow} d.$

(7+6+5)

- 4.
- a) Find a grammar that generates $L=\{a^nb^{n+1},n\geq 0\}$.
- b) Consider a Turing machine given with five states q1,q2,....q5,where q1 is the initial state and q5 is the only final state given in the following table:

Present State		Tape symbol				
	b	0	1			
$\rightarrow q_1$	1Lq ₂	0R q₁				
q ₂	b R q₃	0Lq ₂	1Lq ₂			
Q ₃		b R q ₄	b R q₅			
Q 4	0R q₅	0 R q ₄	1 R q4			
(q5)	0Lq ₂					

Draw the computation sequence of input string 00

c) What are the error recovery techniques used in lexical analysis phase?

(5+8+5)

5.

- a) Define a left recursive grammar. Write an algorithm to eliminate left recursion.
- b) Remove the left recursion from the following grammar.
 - E -> E+T|T
 - T-> T*F|F
 - F-> (E)|id
- c) Considering the following grammar, briefly explain the steps to construct the parsing table and comment on the type of grammar.
 - S->iEtSS'
 - S' ->eS| €
 - E->b

- a) What is a handle? Explain with an example. What are the problems arising in shift reducing parsing?
- b) Write short notes on LEX.
- c) What are inherited and synthesized attributes? Give suitable example.

(7+4+7)

(6+5+7)

7.

6.

- a) What is code optimization? Explain the following techniques with suitable example:
 - i) Constant folding.
 - ii) Elimination of common sub expression.
 - iii) Copy propagation and dead code elimination.
- b) What is DAG (Direct Acyclic graph)? Find out the syntax tree and DAG for the following expression and point out the differences of these two:

 $a+a^{*}(b-c) + (b-c)^{*}d$

(9+9)