NOTE:

Answer question 1 and any FOUR from questions 2 to 7.
 Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1.

a) Determine y[n] for $n \ge 0$ when $x[n] = \delta[n]$ and y[n] = 0 for n < 0, for the given linear constantcoefficient difference equation:

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n-1]$$

b) Sketch and label carefully each of the following signals:

i)
$$x[n]u[2-n]$$

ii)
$$x[n-1]\delta[n-3]$$

For given, $x[n] = \{...0, 1, 1, 1, 1, 1, 0.5, 0..\}$

c) Determine linear convolution of following two sequences using z-transform.

$$x_1[n] = a^n u[n] and x_2[n] = u[n]$$

- Sketch the pole zero plot of the resultant signal.
- d) Draw transposed form for given first order system:

$$H(z) = \frac{1}{1 - a z^{-1}}$$

- e) What is the importance of "zero padding" in the Discrete Fourier Transform computation?
- f) Determine the discrete-time frequency response $H_d(e^{j\omega})$ from the given specifications of continuous-time Linear Time Invariant (LTI) low pass filter $H(j\Omega)$, with sampling time T = 10⁻⁴ second.

$$\begin{array}{l} 0.99 \leq \left| \mathrm{H}(\mathrm{j}\Omega) \right| \leq 1.01, \quad \mathrm{for} \quad \left| \Omega \right| \leq 2\pi(1000) \\ \\ \left| \mathrm{H}(\mathrm{j}\Omega) \right| \leq 0.01, \quad \mathrm{for} \quad \left| \Omega \right| \geq 2\pi(1100) \end{array}$$

g) Prove following properties of the z-transform:

i) Linearity

ii)
$$x^*[n] \xleftarrow{z} X^*(z^*)$$

(7x4)

2.

- a) Explain two methods to design discrete time infinite impulse response from continuous time filter.
- b) Design direct form-I and direct form- II realization of the given system function:

$$H(z) = \frac{1 + \frac{1}{5}z^{-1}}{\left(1 - \frac{1}{2}z^{-1} + \frac{1}{3}z^{-2}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

c) A discrete-time causal LTI system has the system function:

$$H(z) = \frac{(1+0.2z^{-1})(1-9z^{-2})}{1+0.81z^{-2}}$$

i) Is this system stable?

ii) Find expression for a minimum phase system $H_1(z)$ and an all pass system $H_{ap}(z)$ such that $H(z) = H_1(z) H_{ap}(z)$.

(6+6+6)

3.

i)

a) Determine the z-transform and its Region Of Convergence (ROC) of the following sequence:

$$x[n] = n a^n u[n]$$
 (using differentiation in z domain property)

ii)
$$\left(\frac{1}{2}\right)^n \left(u[n] - u[n-10]\right)$$
 (using time shifting property)

b) Determine the Fourier transform X(w) of the signal $x[n] = \{1, 2, 3, 2, 1, 0\}$ and compute the 6-point Discrete Fourier Transform (DFT) V(k) of the signal $v[n] = \{3, 2, 1, 0, 1, 2\}$. Is there any

relation between X(w) and V(k)? Explain.

c) A continuous-time low pass filter with frequency response $H_c(j\omega)$ is given. Detail specifications are:

$$\begin{split} 1 - \delta_1 &\leq \left| H_c(j\Omega) \right| \leq 1 + \delta_1, \qquad \left| \Omega \right| \leq \Omega_p, \\ \left| H_c(j\Omega) \right| \leq \delta_2, \qquad \left| \Omega \right| \geq \Omega_s. \end{split}$$

and a set of discrete-time low pass filters can be obtained from $H_c(s)$ by using the bilinear transformation:

$$H(z) = H_c(s)\Big|_{s=(2/T_d)[(1-z^{-1})/(1+z^{-1})]}$$
, with T_d as variable.

- i) Assuming that Ω_p is fixed, find the value of T_d such that the corresponding pass band cutoff frequency for the discrete-time system is $\omega_p = \pi/2$.
- ii) With Ω_p fixed, sketch ω_p as a function of $0 < T_d < \infty$.
- iii) With both Ω_p and Ω_s fixed, sketch the transition region $\Delta \omega = (\omega_s \omega_p)$ as a function of $0 < T_d < \infty$.

(6+6+6)

- 4.
- a) Derive and draw 2nd order structure of the lattice filter and comment on significance of lattice filter in Speech Processing.
- b) Determine the lattice coefficients corresponding to the Finite Impulse Response (FIR) filter with system function:

$$H(z) = A_3(z) = 1 + \frac{13}{24}z^{-1} + \frac{5}{8}z^{-2} + \frac{1}{3}z^{-3}$$

c) Write short note on "Time dependent Fourier analysis of Radar signals".

(7+7+4)

5.

a) Determine the impulse response and the step response of the causal system, y[n]. Plot the pole-zero patterns and determine stability of the same.

$$y[n] = \frac{3}{4} y[n-1] - \frac{1}{8} y[n-2] + x[n]$$

- b) i) Construct a flow graph *or* butterfly diagram for a 16-point radix-2 decimation-in-time Fast Fourier Transform (FFT) algorithm.
 - Label: (1) All multipliers in terms of powers of W_{16} .
 - (2) Any branch transmittances those are equal to -1.
 - (3) The input and output nodes with appropriate values of the input and DFT sequences, respectively.
 - ii) Determine the number of real multiplications and number of real additions to implement the flow graph.

(9+9)

6.

a) Draw a parallel and a cascade realization of the system:

$$H(z) = \frac{10(1 - \frac{1}{2}z^{-1})(1 - \frac{2}{3}z^{-1})(1 + 2z^{-1})}{(1 - \frac{3}{4}z^{-1})(1 - \frac{1}{8}z^{-1})[(1 - (\frac{1}{2} + j\frac{1}{2})z^{-1})][(1 - (\frac{1}{2} - j\frac{1}{2})z^{-1})]}$$

- b) Linear prediction is an important concept in digital signal processing in practical applications. Realize the lattice filter structure with the problem of linearly predicting the value of a stationary random process either forward in time or backward in time.
- c) Consider the signal $x[n] = \{-1, 2, -3, 2, -1\}$ with Fourier transform $X(\omega)$. Compute the following

quantities, without explicitly computing $X(\omega)$:

i)
$$X(0)$$

ii) $\angle X(w)$
iii) $\int_{-\pi}^{\pi} X(w) dw$
iv) $X(\pi)$ (7+7+4)

7.

- a) Explain how does 2-Dimension signal processing helpful in processing images.
- b) Determine the sequence $x_3(n)$ corresponding to the circular convolution of the sequences $x_1[n]$ and $x_2[n]$. Verify this property of DFT using mathematical definitions of the DFT and IDFT. For given $x_1[n] = \{2,1,2,1\}$ and $x_2[n] = \{1,2,3,4\}$.
- c) Explain the data compression strategies in terms of lossless and lossy algorithms.

(7+7+4)