No. of Printed Pages : 2

B32 - R4 : DISCRETE STRUCTURES

NOTE :

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time:	3 Hours	

Total Marks: 100

- 1. (a) For the function, y = 2x + 1, find the range when domain = {-3, -2, -1, 0, 1, 2, 3}.
 - (b) What probabilities should we assign to the outcomes H (heads) and T (tails) when a fair coin is flipped ? What probabilities should be assigned to these outcomes when the coin is biased so that heads comes up twice as often as tails ?
 - (c) Solve the recurrence relation, $a_n 4a_{n-2} = 0$ for $n \ge 2$ with $a_0 = 1$ and $a_1 = 1$.
 - (d) Let $L = \{w \in \{a, b\}^* : w \text{ contains bba as a substring}\}$. Find a regular expression for $\{a, b\}^* L$.
 - (e) Consider the relation, R on A = {1, 2, 3} whose matrix $M_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ Compute

the matrix M_R₂.

- (f) A family of 4 brothers and 3 sisters is to be arranged for a photograph in one row. In how many ways they can be seated if
 - (i) all the sisters sit together.
 - (ii) no two sisters sit together.
- (g) Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

(7x4)

- 2. (a) Let * be a binary operation defined on Q. Find which of the following binary operations are associative
 - (i) a * b = a b for $a, b \in Q$.

(ii)
$$a * b = \frac{ab}{4}$$
 for $a, b \in Q$.

(iii) a * b = a - b + ab for $a, b \in Q$.

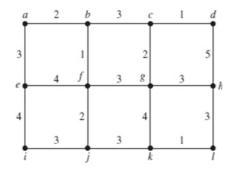
(iv)
$$a * b = ab^2$$
 for $a, b \in Q$

- (b) Which of the following collections of subsets are partitions of the set of integers ?
 - (i) the set of even integers and the set of odd integers.
 - (ii) the set of positive integers and set of negative integers.
 - (iii) the set of integers divisible by 3, the set of integers leaving a remainder of 1 when divided by 3, and the set of integers leaving a remainder of 2 when divided by 3.
 - (iv) the set of integers less than 100, the set of integers with absolute value not exceeding 100, and the set of integers greater than 100.
 (10+8)
- 3. (a) Show $\neg(p \rightarrow q)$ is equivalent to $p \land \neg q$.
 - (b) Use mathematical induction to prove that

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

- (c) Use Karnaugh map to simplify the expression, x'y' + yz + x'yz' (6+6+6)
- 4. (a) Find the prime factorization of 7007.
 - (b) One card is drawn from a standard pack of 52 playing cards. Let A be the event that 'it is a red card' and B be the event that 'it is a court or face card.' What is the probability that the drawn card is red or face or both?
 - (c) Show that among any n+1 numbers, one can find 2 numbers so that their difference is divisible by n.

5. (a) Use Kruskal's algorithm to find a minimum spanning tree in the weighted graph



(b) Show that K_n has a Hamilton circuit whenever $n \ge 3$. (9+9)

- 6. (a) Prove that running time $T(n) = n^3 + 20n$ is $\Omega(n^2)$.
 - (b) Prove that 'A simple graph is connected if and only if it has a spanning tree.'

(8+10)

(9+9)

- 7. (a) Find a Turing machine that recognizes the set $\{0^n 1^n | n \ge 1\}$
 - (b) "Multiply" the sequence 1, 2, 3, 4, ...1, 2, 3, 4,... by the sequence 1, 2, 4, 8, 16,....

- 0 0 0 -