B4.1-R4: COMPUTER BASED STATISTICAL & NUMERICAL METHODS

NOTE :

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.
- 3. Only Non-Programmable and Non-Storage type Scientific Calculator allowed.

Time: 3 Hours

Total Marks: 100

- 1. (a) Find the absolute and relative errors of the volume of sphere $V = \frac{1}{6}\pi d^3$ if the diameter $d = 3.7 \pm 0.05$ cm.
 - (b) Find the interval in which the smallest positive root of the equations $\tan x + \tanh x = 0$ lies. Determine the roots of this equation correct to two decimal places using the bisection method.
 - (c) A committee of 5 persons is to be selected randomly from a group of 5 men and 10 women.
 - (i) Find the probability that the committee consists of 2 men and 3 women.
 - (ii) Find the probability that the committee consists of all women.
 - (d) An information source generates symbols at random from a four-letter alphabet $\{a, b, c, d\}$ with probabilities $(a) = \frac{1}{2}$, $P(b) = \frac{1}{4}$. and $(c) = P(d) = \frac{1}{8}$. A coding scheme encodes these symbols into binary codes using the following variable length coding :
 - a 0
 - *b* 10
 - c 110
 - d 111

Let X be the r.v. denoting the length of the code

- (i) What is the range of *X*?
- (ii) Assume that the generation of symbols are independent, find the probabilities P(X = 1), P(X = 2), P(X = 3), and P(X > 3).

- (e) A noisy transmission channel has a per-digit error probability p = 0.01.
 - (i) Calculate the probability of more than one error in 10 received digits.
 - (ii) Repeat (i), using the Poisson approximation.
- (f) Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find an approximate value of sin(0.15) by Lagrange interpolation.
- (g) Let X equal the birth weight in grams of a baby born. Assume that E(X)=3320 and $Var(X)=(660)^2$. Let \overline{X} be the sample mean of a random sample of size n=225. Find P (3323.76 $\leq \overline{X} \leq$ 3406.24), approximately.

(7×4)

2. (a) Solve the system of equations

 $4x_1 + x_2 + x_3 = 4$ $x_1 + 4x_2 - 2x_3 = 4$ $3x_1 + 2x_2 - 4x_3 = 6$ Using factorization method.

(b) Find the mean and variance of the geometric r.v. X defined by $p_X(X) = P(X = x) = (1 - p)^{x-1}p, x = 1,2,3, ...$

(9+9)

3. (a) Find f'(3) and f''(3) for the following data :

x	3.0	3.2	3.4	3.6	3.8	4.0
f(<i>x</i>)	-14	-10.032	-5.269	-0.256	6.672	14

(b) Evaluate $I = \int_{1}^{2} \frac{dx}{5+3x}$ with 4 and 8 subintervals using the trapezium rule. Compare with the exact solution and find the absolute errors in the solutions. Find the bound on the errors.

(9+9)

4. (a) The joint pdf of a bivariate r.v. (X, Y) is given by

$$f_{XY}(x,y) = \begin{cases} ke^{-(ax+by)}x > 0, y > 0\\ 0 & \text{otherwise} \end{cases}$$

where a and b are positive constant and k is constant.

- (i) Determine the value of k.
- (ii) Are *X* and *Y* independent?
- (b) If $X_1, X_2, ..., X_n$ is a random sample on X where X have normal distribution with parameters μ and σ^2 . Find the maximum likelihood estimators of μ and σ^2 .

(9+9)

- 5. (a) A random sample of size n = 100 is taken from a population with $\sigma = 5.1$. Given that the sample mean is $\bar{x} = 21.6$, construct a 95% confidence interval for the population mean μ .
 - (b) A researcher wants to establish that the thermal conductivity of a certain kind of cement brick differs from 0.340, the value claimed. He test this assumption on the basis of n = 35 determinations and at the 0.05 level of significance. From information gathered in similar studies, the variability of such determinations is given $\sigma = 0.010$. Perform the test procedure and write your conclusion.
 - (c) Find the maximum likelihood estimates for $\theta_1 = \mu$ and $\theta_2 = \sigma^2$ if a random sample of size 15 from $N(\mu, \sigma^2)$ yielded the following values :

31.5	35.2	31.6	36.9	29.6
36.7	33.8	34.4	35.8	30.1
30.5	34.5	33.9	34.2	32.7

(6+6+6)

- 6. (a) Let the distribution of X be $N(\mu, \sigma^2)$. Obtain the method of moments point estimators of μ and σ^2 .
 - (b) Suppose that scores in a standardized test in mathematics taken by students from large and small high schools are $N(\mu_x, \sigma^2)$ and $N(\mu_y, \sigma^2)$ respectively, where σ^2 is unknown. If a random sample of n = 9 students from large high schools yielded $\bar{x} = 81.31, s_x^2 = 60.76$, and a random sample of m = 15 schools yielded $\bar{y} = 78.61, s_y^2 = 48.24$, then find the 95% confidence interval for $\mu_x \mu_y$.

(9+9)

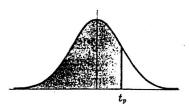
- 7. (a) Let the joint p.m.f. of X and Y be $f(x, y) = \frac{1}{4}, (x, y) \in S = \{(0, 0), (1, 1), (1, -1), (2, 0)\}.$
 - (i) Are X and Y independent?
 - (ii) Calculate Cov(X, Y) and ρ .
 - (b) At a gas station, 180 drivers were asked to record the mileage of their cars and the number of miles per gallon. The results are summarized in the table.

	Sample mean	Standard deviation
Mileage	24,598	14,634
Miles per gallon	23.8	3.4
The sample corr	elation coefficient i	s r = -0.17.

- (i) Compute the least squares regression line which describes how the number of miles per gallon depends on the mileage.
- (ii) You purchase a used car with 35,000 miles on it. Predict the number of miles per gallon.
- (c) The joint pdf of a bivariate r.v. (X, Y) is given by

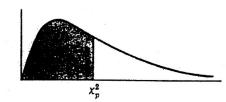
$$f(x,y) = \begin{cases} \frac{1}{y}e^{-\frac{x}{y}}e^{-y}x > 0, y > 0\\ 0 & otherwise \end{cases}$$

- (i) Show by integration the function is indeed a pdf.
- (ii) Find P(X > 1|Y = y)


(3+6+9)

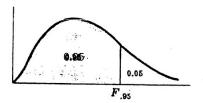
Areas Under the Standard Normal Curve from 0 to z

				and the second						
z	0	1	2	3	4	5	6	7	8	9
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0754
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2258	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2518	.254
0.7	.2580	.2612	.2642	.2673	.2303	.2734	.2764	.2480	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2996	.3023	.3051	.3078	.3106	.313
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
	0.410	0.400	0.401	0.405	0500	0501	0554	0555		0.00
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.362
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.383
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.401
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.417
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.444
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.454
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.463
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.2	.4990	.4991	.4991	.4991		.4992	.4992			
3.3	.4995	.4995	.4994	.4994 .4996	.4994	.4994	.4994	.4995	.4995	.4995
	.4995				.4996			.4996	.4996	.4997
3.4	.4331	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998
3.6	.4998	.4998	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.7	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.8	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.9	.5000	.5000	.5000	.5000	.5000	.5000	.5000	.5000	.5000	.5000

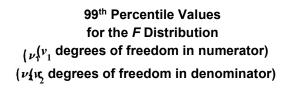

Percentile Values (t_p) for Student's *t* Distribution with ν Degrees of Freedom (shaded area = p)

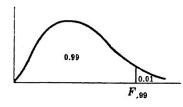
P	t.995	t.99	t.975	t.85	t.90	t.80	t.75	t.70	t.60	t.ss
1	63.66	31.82	12.71	6.31	3.08	1.376	1.000	.727	.325	.158
2	9.92	6.96	4.30	2.92	1.89	1.061	.816	.617	.289	.142
3	5.84	4.54	3.18	2.35	1.64	.978	.765	.584	.277	.137
.4	4.60	3.75	2.78	2.13	1.53	.941	.741	.569	.271	.134
5	4.03	3.36	2.57	2.02	1.48	.920	.727	.559	.267	.132
6	3.71	3.14	2.45	1.94	1.44	.906	.718	.553	.265	.131
7	3.50	3.00	2.36	1.90	1.42	.896	.711	.549	.263	.130
8	3.36	2.90	2.31	1.86	1.40	.889	.706	.546	.262	.130
9	3.25	2.82	2.26	1.83	1.38	.883	.703	.543	.261	.129
10	3.17	2.76	2.23	1.81	1.37	.879	.700	.542	.260	.129
11	3.11	2.72	2.20	1.80	1.36	.876	.697	.540	.260	.129
12	3.06	2.68	2.18	1.78	1.36	.873	.695	.539	.259	.128
13	3.01	2.65	2.16	1.77	1.35	.870	.694	.538	.259	.128
14	2.98	2.62	2.14	1.76	1.34	.868	.692	.537	.258	.128
15	2.95	2.60	2.13	1.75	1.34	.866	.691	.536	.258	.128
16	2.92	2.58	2.12	1.75	1.34	.865	.690	.535	.258	.128
17	2.90	2.57	2.11	1.74	1.33	.863	.689	.534	.257	.128
18	2.88	2.55	2.10	1.73	1.33	.862	.688	.534	.257	.127
19	2.86	2.54	2.09	1.73	1.33	.861	.688	.533	.257	.127
20	2.84	2.53	2.09	1.72	1.32	.860	.687	.533	.257	.127
21	2.83	2.52	2.08	1.72	1.32	.859	.686	.532	.257	.127
22	2.82	2.51	2.07	1.72	1.32	.858	.686	.532	.256	.127
23	2.81	2.50	2.07	1.71	1.32	.858	.685	.532	.256	.127
24	2.80	2.49	2.06	1.71	1.32	.857	.685	.531	.256	.127
25	2.79	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.127
26	2.78	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.127
27	2.77	2.47	2.05	1.70	1.31	.855	.684	.531	.256	.127
28	2.76	2.47	2.05	1.70	1.31	.855	.683	.530	.256	.127
2 9 ·	2.76	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.127
30	2.75	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.127
40	2.70	2.42	2.02	1.68	1.30	.851	.681	.529	.255	.126
60	2.66	2.39	2.00	1.67	1.30	.848	.679	.527	.254	.126
120	2.62	2.36	1.98	1.66	1.29	.845	.677	.526	.254	.126
8	2.58	2.33	1.96	1.645	1.28	.842	.674	.524	.253	.126

Source: R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (5th edition), Table III, Oliver and Boyd Ltd., Edinburgh, by permission of the authors and publishers.


Percentile Values (χ_p^2) for the Chi-Square Distribution with ν Degrees of Freedom (shaded area = p)

V	x ² .995	x ² .99	x ² .975	x ² .95	x ² .90	x ² .75	x ² .50	x ² .25	x ² .10	x ² .05	x ² .025	X ² .01	x ² .005
1	7.88	6.63	5.02	3.84	2.71	1.32	.455	.102	.0158	.0039			.0000
2	10.6	9.21	7.38	5.99	4.61	2.77	1.39	.575	.211	.103	.0506	.0201	.0100
3	12.8	11.3	9.35	7.81	6.25	4.11	2.37	1.21	.584	.352	.216	.115	.072
4	14.9	13.3	11.1	9.49	7.78	5.39	3.36	1.92	1.06	.711	.484	.297	.207
5	16.7	15.1	12.8	11.1	9.24	6.63	4.35	2.67	1.61	1.15	.831	.554	.412
6	18.5	16.8	14.4	12.6	10.6	7.84	5.35	3.45	2.20	1.64	1.24	.872	.676
7	20.3	18.5	16.0	14.1	12.0	9.04	6.35	4.25	2.83	2.17	1.69	1.24	.989
8	22.0	20.1	17.5	15.5	13.4	10.2	7.34	5.07	3.49	2.73	2.18	1.65	1.34
9	23.6	21.7	19.0	16.9	14.7	11.4	8.34	5.90	4.17	3.33	2.70	2.09	1.73
10	25.2	23.2	20.5	18.3	16.0	12.5	9.34	6.74	4.87	3.94	3.25	2.56	2.16
11	26.8	24.7	21.9	19.7	17.3	13.7	10.3	7.58	5.58	4.57	8.82	8.05	2.60
12	28.3	26.2	23.3	21.0	18.5	14.8	11.3	8.44	6.30	5.23	4.40	3.57	3.07
13	29.8	27.7	24.7	22.4	19.8	16.0	12.3	9.30	7.04	5.89	5.01	4.11	3.57
14	31.3	29.1	26.1	23.7	21.1	17.1	13.3	10.2	7.79	6.57	5.63	4.66	4.07
15	32.8	30.6	27.5	25.0	22.3	18.2	14.3	11.0	8.55	7.26	6.26	5.23	4.60
16	34.3	32.0	28.8	26.3	23.5	19.4	15.3	11.9	9.31 .	7.96	6.91	5.81	5.14
17	35.7	33.4	30.2	27.6	24.8	20.5	16.3	12.8	10.1	8.67	7.56	6.41	5.70
18	37.2	34.8	31.5	28.9	26.0	21.6	17.3	13.7	10.9	9.39	8.23	7.01	6.26
19	38.6	36.2	32.9	30,1	27.2	22.7	18.3	14.6	11.7	10.1	8.91	7.63	6.84
20	40.0	37.6	34.2	31.4	28.4	23.8	19.3	15.5	12.4	10.9	9,59	8.26	7.43
21	41.4	38.9	35.5	32.7	29.6	24.9	20.3	16.3	13.2	11.6	10.3	8.90	8.03
22	42.8	40.3	36.8	33.9	30.8	26.0	21.3	17.2	14.0	12.3	11.0	9.54	8.64
23	44.2	41.6	38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10.2	9.26
24	45.6	43.0	39.4	36.4	33.2	28.2	23.3	19.0	15.7	13.8	12.4	10.9	9.89
25	46.9	44.3	40.6	37.7	34.4	29.3	24.3	19.9	16.5	14.6	13.1	11.5	10.5
26	48.3	45.6	41.9	38.9	35.6	30.4	25.3	20.8	17.3	15.4	13.8	12.2	11.2
27	49.6	47.0	43.2	40.1	36.7	31.5	26.3	21.7	18.1	16.2	14.6		11.8
28	51.0	48.3	44.5	41.3	37.9	32.6	27.3	22.7	18.9	16.9	15.3		12.5
29	52.3	49.6	45.7	42.6	39.1	33.7	28.3	23.6	19.8	17.7	16.0		13.1
30	53.7	50.9	47.0	43.8	40.3	34.8	29.3	24.5	20.6	18.5	16.8	15.0	13.8
40	66.8	63.7	59.3	55.8	51.8	45.6	39.3	83.7			24.4		20.7
50	79.5	76.2	59.5 71.4	67.5	63.2	40.0 56.3	49.3	42.9	37.7		32.4		28.0
60	92.0	88.4	83.3	79.1	74.4	67.0	49.3 59.3	42.9 52.3	46.5	43.2	40.5	37.5	35.5
70	104.2	100.4	95.0	90.5	85.5	6 77	CO 9	61 7	EE 9	E1 7	40 Ó	AE 4	40.0
	104.2	100.4				77.6	69.3	61.7	55.3		48.8		43.3
80		112.3	106.6	101.9	96.6	88.1	79.3	71.1	64.3		57.2		51.2
90	128.3	124.1	118.1	113.1	107.6	98.6	89.3	80.6	73.3	69.1	65.6		59.2
100	140.2	135.8	129.6	124.3	118.5	109.1	99.3	90.1	82.4	77.9	74.2	70.1	67.3


Source: Catherine M. Thompson, Table of percentage points of the χ^2 distribution, Biometrika, Vol. 32 (1941), by permission of the author and publisher.


95th Percentile Values for the *F* Distribution ($\nu_{t}\nu_{1}$ degrees of freedom in numerator) ($\nu_{t}\nu_{2}$ degrees of freedom in denominator)

¥2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	2 50	251	252	253	254
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3,49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3 68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
~	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 178, by permission.

¥2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	4052	5000	5403	5625	5764	5859	5928	5981	6023	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5	99.5
3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	26.9	26.7	26.6	26.5	26.4	26.3	26.2	26.1
4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.2	14.0	13.9	13.8	13.7	13.7	13.6	13.5
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
. 6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.9 6	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3,80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00	2.92	2.84		2.67	2.58	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78 2.74	2.70	2.62 2.58	2.54 2.49	2.45 2.40	2.35 2.31	2.26 2.21
24 25	7.82 7.77	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66 2.62	2.58	2.49	2.40 2.36	2.31	2.21
		5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2.99 2.96	2.85 2.82	2.70	2.58	2.54	2.45	2.33	2.23	2.13
26 27	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09		2.82	2.63	2.55	2.30	2.38	2.33	2.20	2.10
27	7.68 7.64	5.49 5.45	4.60	4:11	3.78 3.75	3.56 3.53	3.39 3.36	3.26	3.15	3.06	2.93 2.90	2.78	2.60	2.52	2.44	2.35	2.25	2.20	2.06
28	7.60	0.45 5.42	4.57	4.07	3.75	3.50	3.30	3.23 3.20	3.12 3.09	3.03	2.90	2.73	2.57	2.49	2.44	2.33	2.23	2.14	2.03
30	7.56	5.42 5.39	4.54	4.04	3.70	3.50	3.30		3.09		2.84	2.13	2.55	2.45	2.39	2.30	2.23	2.11	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12		2.89	2.98	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.80
60	7.08	4.98	4.31	3.65	3.34	3.12	2.95		2.89	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79		2.56	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
	6.63	4.61	3.78	3.32	3.02	2.80	2.64		2.41	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00
	0.00	4.01	0.10	0.02	0.02	2.00	4.04	2.01	6.21	2.02	4.10	2.01	1.00			2.00			

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 180, by permission.

Values of $e^{-\lambda}$	
$(0 < \lambda < 1)$	

λ	0	1 · · ·	2	3	4	5	6	7	8	9
0.0	1.0000	.9900	.9802	.9704	.9608	.9512	.9418	.9324	.9231	.9139
0.1	.9048	.8958	.8869	.8781	.8694	.8607	.8521	.8437	.8353	.8270
0.2	.8187	.8106	.8025	.7945	.7866	.7788	.7711	.7634	.7558	.7483
0.3	.7408	.7334	.7261	.7189	.7118	.7047	.6977	.6907	.6839	.6771
0.4	.6703	.6636	.6570	.6505	.6440	.6376	.6313	.6250	.6188	.6126
0.5	.6065	.6005	.5945	.5886	.5827	.5770	.5712	.5655	.5599	.5543
0.6	.5488	.5434	.5379	.5326	.5273	.5220	.5169	.5117	.5066	.5016
0.7	.4966	.4916	.4868	.4819	.4771	.4724	.4677	.4630	.4584	.4538
0.8	.4493	.4449	.4404	.4360	.4317	.4274	.4232	.4190	.4148	.4107
0.9	.4066	.4025	.3985	.3946	.3906	.3867	.3829	.3791	.3753	.3716

 $(\lambda = 1, 2, 3, \ldots, 10)$

λ	1	2	3	4	5	6	7	8	9	10
e-1	.36788	.13534	.04979	.01832	.006738	.002479	.000912	.000335	.000123	.000045

Note: To obtain values of $e^{-\lambda}$ for other values of λ , use the laws of exponents. **Example:** $e^{-3.48} = (e^{-3.00})(e^{-0.48}) = (0.04979)(0.6188) = 0.03081.$

n.u	Jad Tr										
One-Sic			0.2.5	0.1	005		10	0.5	0.05	0.1	005
α =	.10	.05	.025	.01	.005	$\alpha =$.10	.05	.025	.01	.005
Two-Si											
α =	.20	.10	.05	.02	.01	$\alpha =$.20	.10	.05	.02	.01
n = 1	.900	.950	.975	.990	.995	n = 21	.226	.259	.287	.321	.344
2	.684	.776	.842	.900	.929	22	.221	.253	.281	.314	.337
3	.565	.636	.708	.785	.829	23	.216	.247	.275	.307	.330
4	.493	.565	.624	.689	.734	24	.212	.242	.269	.301	.323
5	.447	.509	.563	.627	.669	25	.208	.238	.264	.295	.317
6	.410	.468	.519	.577	.617	26	.204	.233	.259	.290	.311
7	.381	.436	.483	.538	.576	27	.200	.229	.254	.284	.305
8	.358	.410	.454	.507	.542	28	.197	.225	.250	.279	.300
9	.339	.387	.430	.480	.513	29	.193	.221	.246	.275	.295
10	.323	.369	.409	.457	.489	30	.190	.218	.242	.270	.290
11	.308	.352	.391	.437	.468	31	.187	.214	.238	.266	.285
12	.296	.338	.375	.419	.449	32	.184	.211	.234	.262	.281
13	.285	.325	.361	.404	.432	33	.182	.208	.231	.258	.277
14	.275	.314	.349	.390	.418	34	.179	.205	.227	.254	.273
15	.266	.304	.338	.377	.404	35	.177	.202	.224	.251	.269
16	.258	.295	.327	.366	.392	36	.174	.199	.221	.247	.265
17	.250	.286	.318	.355	.381	37	.172	.196	.218	.244	.262
18	.244	.279	.309	.346	.371	38	.170	.194	.215	.241	.258
19	.237	.271	.301	.337	.361	39	.168	.191	.213	.238	.255
20	.232	.265	.294	.329	.352	40	.165	.189	.210	.235	.255
20		.200	1 22.		ximation		1.07	1.22	1.36	1.52	1.63
				For n 2			\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}
Carrier	ا ما م	a d 1				1 of Lesli					

Table 7. Critical Values of the Kolmogorov-Smirnov One Sample TestStatistics This table gives the values of $D_{n.a}^+$ and $D_{n.a}$ for which $\alpha \ge P\{D_n^+ > D_{n.a}^+\}$ and $\alpha \ge P\{D_n^- > D_{n.a}^-\}$ for some selected values of *n* and *a*.

Source. Adapted by permission from Table 1 of Leslie H. Miller. Table of Percentage points of Kolmogorov statistics, J. Am. Stat. Assoc. 51 (1956). 111-121.

SPACE FOR ROUGH WORK