B4.1-R4: COMPUTER BASED STATISTICAL & NUMERICAL METHODS

NOTE:

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.
- 3. Only Non-Programmable and Non-Storage type Scientific Calculator allowed.

Time: 3 Hours

Total Marks: 100

1.

- a) A pack contains 4 blue, 2 red and 3 black pens. If 2 pens are drawn at random from the pack, NOT replaced and then another pen is drawn. What is the probability of drawing 2 blue pens and 1 black pen?
- b) Find the absolute error, relative error and percent of error of the approximation 3.14 to the value of pi = 3.141592, as the actual value.
- c) The number of persons X, in a Singapore family chosen at random has the following probability distribution:

Х	1	2	3	4	5	6	7	8
P(X)	0.34	0.44	0.11	0.06	0.02	0.01	0.01	0.01

Find the average family size E(X)

- d) Find a root of x^4 -x-10 = 0, using iterative method.
- e) Use Gaussian elimination to solve the system of linear equations

$$x_1 + 5x_2 = 7$$

 $-2x_1 - 7x_2 = -5.$

- f) Explain Chebyshev's Theorem. Give suitable example.
- g) Define the measures of central tendency: Mean, Mode, and Median, and give the relationship between them.

(7x4)

2.

a) Calculate the least square regression line equation with the given X and Y values as shown in the table:

X	Y
60	3.1
61	3.6
62	3.8
63	4
65	4.1

b) Integrate the data using Simpson's–1/3 and Simpson's–3/8 Rules.

1	0	1	2	3	4	5	6	7
Xi	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7
f _i	1.543	1.669	1.811	1.971	2.151	2.352	2.577	2.828

(10+8)

3.

a) Compute f (0.3) for the data

Х	0	1	3	4	7
F	1	3	49	129	813

using Lagrange's interpolation formula (Analytic value is 1.831)

b) What is Bernoulli distribution? Give suitable example. Find the probability of getting 5 in a single throw of a dice.

(9+9)

4.

a) Twenty sheets of aluminum alloy were examined for surface flaws. The frequency of the number of sheets with a given number of flaws per sheet was as follows:

Number of flaws	Frequency
0	4
1	3
2	5
3	2
4	4
5	1
6	1

What is the probability of finding a sheet chosen at random which contains 3 or more surface flaws? Draw the Histogram of Probabilities

b) By using the Newton-Raphson's method find the positive root of the quadratic equation $5x^2+11x - 17 = 0$, correct up to 3 significant figures.

(9+9)

5.

b)

a) In a recent little league softball game, each player went to bat 4 times. The number of hits made by each player is described by the following probability distribution.

Number of hits , x	0	1	2	3	4
Probability, P(x)	0.10	0.20	0.30	0.25	0.15

What is the mean of the probability distribution?

Given the system of equations $3x_1 + 7x_2 + 13x_3 = 76$ $x_1 + 5x_2 + 3x_3 = 28$ $12x_1 + 3x_2 - 5x_3 = 1$ Find the solution using the Gauss-Seidel method. Use $(x_1, x_2, x_3)=(1,0,1)$ as the initial guess.

(9+9)

6.

a) Define population means. Differentiate between population mean and simple mean. All 57 residents in a nursing home were surveyed to see how many times a day they eat meals. The results are obtained as follows:

What is the population mean for the number of meals eaten per day?

b) The following table contains data on the number of complaints received per day at a major retail bank's branches:

Number of Complaints	Frequency
0	270
1	140
2	65
3	14
4+	5
Total	494

Propose an appropriate distribution for these data and test to see if it is consistent with the data. (9+9)

7.

a) Obtain the first and second derivatives of the function tabulated below at the points x = 1.1 and x = 1.2.

X:	1	1.2	1.4	1.6	1.8	2.0
у:	0	0.128	0.544	1.298	2.440	4.02

b) Suppose that X and Y are jointly absolutely continuous with density function given by

 $f(x,y) = \begin{cases} 2e^{-x} e^{-2y}, \ 0 < x < \infty, 0 < y < \infty \\\\ 0, & \text{otherwise} \end{cases}$ Find (a) P(X > 1, Y <1), (b) P(X<Y)

(12+6)