B5.2-R4: AUTOMATA THORY AND COMPILER DESIGN

NOTE:

1.	Answer question 1 and any FOUR from questions 2 to 7.
2.	Parts of the same question should be answered together and in the same
	sequence.

Time: 3 Hours

Total Marks: 100

1.

- a) What is Syntax directed translation? In this context define synthesized attributes with example.
- b) Explain different error recovery strategies used in syntax analysis.
- c) Consider the following grammar
 - stmt \rightarrow if expr then stmt
 - | if expr then stmt else stmt

| other

Write down the language generated by the above grammar. Convert the above grammar into an unambiguous form.

- d) Operator precedence parsing is suitable for operator grammar Justify.
- e) What is an activation record used in runtime storage management? What does a typical activation record consist of? What is the role of processor register used in this management?
- f) What do you mean by I-values and r-values of an identifier? How are they used in the translation of expressions?
- g) Compare and contrast triples with indirect triples?

(7×4)

- 2.
- a) Prove the following theorem by induction: 1+2+3+...+n = n (n+1)/2.
- b) Define Kleene closure. Explain with an example.
- c) Consider the following grammar $G=(T=\{m,n,q,\$\}, NT=\{S, S0, A, B, C\}, S0, P)$. P:
 - (1) $S' \rightarrow S$ (2) $S \rightarrow AB$ (3) $A \rightarrow mA$ (4) $A \rightarrow nA$ (5) $A \rightarrow \epsilon$ (6) $B \rightarrow qCn$ (7) $C \rightarrow Cm$ (8) $C \rightarrow m$

Compute the FIRST and FOLLOW sets for the non-terminals in G.

(5+6+7)

3.

- a) Find a grammar generating $L = \{a^n b^n c^i | n \ge 1, i \ge 0\}$. Prove that it does so.
- b) Design a Turing machine M to recognize the language $\{1^n 2^n 3^n | n \ge 1\}$

4.

- a) Consider the following grammar $S \rightarrow AB|CA$, $B \rightarrow AB|BC$, $A \rightarrow a$, $C \rightarrow a B |c$. Convert it into reduced form.
- b) Construct a PDA accepting the set of all strings over {0,1} with equal no. of 0's & 1's.
- c) Define Type 2 and Type 3 grammar. Find the highest type number which can be applied for the following grammars.

i. $S \rightarrow Aa$, $A \rightarrow c|Ba$ $B \rightarrow abc$ ii. $S \rightarrow ASB|d$ $A \rightarrow aA$

(7+7+4)

5.

a) Remove the left recursion from the following grammar.

E -> E+T | T T-> T*F | F F-> (E) | id

- b) Describe the use of stack & heap in runtime allocation.
- c) To improve the target code we generally use copy propagation, code motion and reduction in strength. Explain and give example in each case.

(6+6+6)

6.

- a) Draw the steps of parsing $id + id_2 id_3$ with the help of shift reduces parser. Define viable prefix in this parser.
- b) How can you define a Direct Acyclic Graph (DAG). Write down its applications.
- c) Draw the DAG for the following code:
 - 1. $t_1 := 4^*i$
 - 2. $t_2 := a[t_1]$
 - 3. t₃:= 4[∗]i
 - 4. t₄:= b[t₃]
 - 5. $t_5 := t_2 t_4$
 - 6. $t_6:= prod+t_5$
 - 7. prod:= t_6
 - 8. t₇:= i+1
 - 9. i:= t₇
 - 10. if i <= 20 goto(1)

(9+5+4)

7.

- a) Define LR parser. What are its merits? Also point out the drawbacks of LR parsing method.
- b) Suppose a DAG is given as input. How can you get an optimal code for the DAG? Write a algorithm for getting a heuristic ordering of DAG.
- c) How can you speed up the lexical analyzer using input buffering?

(6+9+3)