NOTE:

1.	Answer question 1 and any FOUR from questions 2 to 7.		
2.	Parts of the same question should be answered together and in the same sequence.		

Time: 3 Hours

Total Marks: 100

a) Find Re(z) and Im(z) where
$$z = \frac{1+7i}{(2-i)^2}$$
.

b) If
$$y = a \sin x + b \cos x$$
, prove that $y^2 + \left(\frac{dy}{dx}\right)^2 = a^2 + b^2$

c) If
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ find the value of $(2I + 3E)^3$.

d) Evaluate the integral
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
.

e) Find the first three non-zero terms of the Maclaurin's series for
$$f(x) = \log(1+x)$$
 at $x=0$.

f) Find the equation of the parabola whose focus is
$$(1,-1)$$
 and whose vertex is $(2,1)$.

g) Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{2^n}$$
.

((7x	4)

2.

a) Reduce the matrix
$$A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{vmatrix}$$
 to its normal form and find its rank.

b) Let the matrix A be defined as $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$. Find the eigen values of $3A^3 + 5A^2 - 6A + 2I$.

$$3A^3 + 5A^2 - 6A + 2I$$
. (8+10)

3.

a) If
$$\sin y = x \sin(a + y)$$
, then $\frac{dy}{dx} = A \sin^2(a + y)$. Find A and then find the value of $\frac{dy}{dx}$ at $x = 0$

b) Show that
$$\sin x(1 + \cos x)$$
 has a maximum value when $x = \frac{\pi}{3}$.

c) Discuss the continuity of the function
$$f(x) = \begin{cases} 2x - 1 & \text{if } x < 2 \\ \frac{3x}{2} & \text{if } x \ge 2 \end{cases}$$

(6+6+6)

4.

- a) Find the area bounded by the curve $y = x^3$, the *y*-axis and the lines y = 1 and y = 8.
- b) Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx.$

c) Find all asymptotes of the curve $4y^2 - 9x^2 = x^2y^2$.

5.

a) Solve the differential equation
$$\frac{xdy}{dx} + \cot y = 0, y(\sqrt{2}) = \frac{\pi}{4}$$
.

b) Test the convergence of the series $\sum \frac{x^{2n}}{2n}$.

c) Find the equation of the straight line passing through the origin and makes an angle which 60° with the line $x + \sqrt{3}y + 3\sqrt{3} = 0$.

(8+6+4)

(6+6+6)

6. a) Find the latus rectum, the eccentricity, coordinates of foci and length of the axes of the ellipse $3x^2 + 4y^2 = 12$.

b) Solve the differential equation
$$(x + y)^2 \frac{dy}{dx} = 4$$
.

c) Differentiate the following function with respect to $x (\tan x)^{\sec x}$.

(8+6+4)

7.

- a) Find the cosine and sine of the angle between the two vectors a = 3i + j + 2k and b = 2i 2j + 4k. Also, find a unit vector perpendicular to both **a** and **b**.
- b) Find the limit when $n \rightarrow \infty$ of the series

	1 1 1 1	1
	$\frac{1}{n}$ $+$ $\frac{1}{n+1}$ $+$ $\frac{1}{n+2}$ $+$ $\frac{1}{n+2}$	$\frac{1}{3n}$
c)	Evaluate $\lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{x^2} \log(1+x) \right].$	

(6+6+6)