C0-R4.B1: ELEMENTS OF MATHEMATICAL SCIENCES

NOTE:

1.	Answer question 1 and any FOUR from questions 2 to 7.								
2.	Parts of the same question should be answered together and in the same								
	sequence.								

Time: 3 Hours

Total Marks: 100

1.
a) Find the probability of getting 4 heads in 6 tosses of a fair coin.
b) If
$$\vec{a} = 5i - 4j + k$$
 and $\vec{b} = -4i + 3j - 2k$ then find $\vec{a} \cdot \vec{b}$ and $\vec{a} \times \vec{b}$.
c) Identify the following statement true or false, Justify your answer.
"A binomial distribution can have mean 5 and standard deviation 3".
d) Evaluate the integral, $\int \frac{1}{\sqrt{x}} \cos \sqrt{x} \, dx$.
e) Find the first three terms of the Maclaurin's series for $f(x) = \tan^{-1} x$.
f) Find the equation of the parabola whose focus is $(1,-1)$ and vertex is $(2,1)$.
g) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{2n}}{n!}$.
a) Solve the following system of equations by Crammer's Rule:
 $x + 2y + 3z = 6$
 $2x + 4y + z = 7$
 $3x + 2y + 9z = 14$
b) Find the inverse of the matrix $\begin{bmatrix} 0 & 0 & -1 \\ 3 & 4 & 5 \\ -2 & -4 & -7 \end{bmatrix}$ by Gauss Elimination method.
(9+9)

a) If
$$x = a(\cos\theta + \theta\sin\theta)$$
, $y = a(\sin\theta - \theta\cos\theta)$, then find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

b) Discuss the applicability of the Lagrange mean value theorem for the function f(x) = x(x-1)(x-2) in the interval $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$.

c) Find the limit when
$$n \to \infty$$
 of the series

$$\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n}.$$
(6+6+6)

4.

a) Find the equation of a circle which passes through the points (1, -2) and (4, -3) and has its centre on the line 3x + 4y = 7.

b) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{\sec x}{1 + 2\sin^2 x} dx.$$

c) Find all the asymptotes of the curve $y^2(x-2) = x^2(y-1)$.

(6+	61	6)
(0+	0+	U)

- 5.
- a) In a bolt factory, machines A, B and C manufacture respectively 25%, 35% and 40% of the total production. Let from their output, 5%, 4% and 2%, are defective bolts respectively. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine B?
- b) Test the convergence of an infinite series whose n^{th} term is $\frac{\sqrt{n}}{n^2 + 1}$.
- c) Evaluate $\lim_{x \to 0} \frac{\log x}{\cot x}$.

(8+6+4)

6.

- a) Find the latus rectum, the eccentricity, coordinates of foci and length of the axes of the ellipse $3x^2 + 4y^2 = 12$.
- b) Find the Eigen values and Eigen vectors of $\begin{bmatrix} -2 & 1 & 1 \\ -11 & 4 & 5 \\ -1 & 1 & 0 \end{bmatrix}$.

(9+9)

7.

a) Let the probability density function of a random variable *x* be

$$f(x) = \begin{cases} kx^{\alpha-1}(1-x)^{\beta-1}, \text{ for } 0 < x < 1, \quad \alpha > 0, \quad \beta > 0\\ 0, \quad \text{otherwise} \end{cases}$$

Find *k* and mean of *x*.

b) Find the regression line y on x for the following data:

х	1	3	4	6	8	9	11	14
у	1	2	4	4	5	7	8	9

Also, estimate the value of y, when x = 10.

(9+9)