NOTE:

Answer question 1 and any FOUR from questions 2 to 7.
Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours 100

Total Marks:

1.

- a) What do you mean by worst case time complexity and average case time complexity? Give an example of an algorithm where they are different.
- b) When do you say
 - i) f(n) is O(g(n))?
 - ii) f(n) is $\Omega(g(n))$?

Illustrate with examples.

- c) Compare the efficiency of recursive and iterative algorithms.
- d) Find a solution to the recurrence relation $Tn = 3(T_{\frac{n}{3}}) + c$, where n is a power of 3 and c is a

constant and $T_1 = b$.

- e) Explain what you mean by saying a problem π_1 is polynomial time reducible to π_2 ? How is it useful in proving problem NP-complete?
- f) Explain and compare the design methods 'Divide and Conquer' and 'Dynamic Programming'.
- g) Give the worst case time complexity of finding if there is a cycle in directed graph of *n* nodes and *e* edges.

(7x4)

- 2.
- a) Write a procedure for finding the maximum of n integers and then the minimum of them. How many comparisons do you need to do this? Explain how you can find maximum and minimum simultaneously with less number of comparisons?
- b) A defective chessboard is a 2^k × 2^k board of squares with exactly one defective square. For any k how many different defective chessboards are there? You are required to tile a defective chessboard using triominoes (L shaped polygons covering exactly 3 squares). Write an algorithm to solve this problem using divide and conquer approach.

(9+9)

3.

- a) Explain the dynamic programming paradigm illustrating with the matrix-chain multiplication problem.
- b) What is the smallest number of scalar multiplication required to multiply six matrices A₁, A₂, A₃, A₄, A₅, A₆ where size of each is given below.

Matrix	Dimensions
A ₁	30 x 35
A ₂	35 x 15
A ₃	15 x 5
A_4	5 x 10
A ₅	10 x 20
A ₆	20 x 25

c) Explain KMP algorithm for string matching and discuss the complexity.

- 4.
- a) Briefly explain DFS on a directed graph.
- b) Using depth first search write an algorithm to find the strongly connected components of a graph.
- c) Illustrate the working of your algorithm for the following graph.

(4+8+6)

- 5. Write short notes on the followings:
- a) Amortized analysis.
- b) RSA algorithm for public-key cryptography.
- c) Approximation algorithms.

(6+6+6)

6.

- a) What do you mean by a spanning tree of a graph and minimum spanning tree of a graph?
- b) Describe Prim's algorithm for finding minimal spanning tree and discuss its complexity.
- c) Describe Kruskal's algorithm for the same and discuss its complexity.
- d) Illustrate the two algorithms step by step for the following graph.

(2+5+5+6)

7.

- a) What do you mean by a NP-complete problem? Prove that Boolean satisfiability is NP-complete? Will the theorem still hold if the Boolean expression is in CNF?
- b) Explain what you mean by the clique decision problem. Show that the clique problem is NPcomplete.

(12+6)