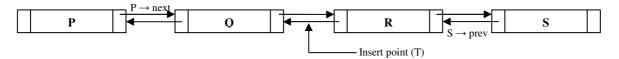
#### A6-R3: DATA STRUCTURES THROUGH 'C' LANGUAGE

#### NOTE:

- 1. There are **TWO PARTS** in this Module/Paper. **PART ONE** contains **FOUR** questions and **PART TWO** contains **FIVE** questions.
- 2. **PART ONE** is to be answered in the **TEAR-OFF ANSWER SHEET** only, attached to the question paper, as per the instructions contained therein. **PART ONE** is **NOT** to be answered in the answer book.
- 3. Maximum time allotted for **PART ONE** is **ONE HOUR**. Answer book for **PART TWO** will be supplied at the table when the answer sheet for **PART ONE** is returned. However, candidates, who complete **PART ONE** earlier than one hour, can collect the answer book for **PART TWO** immediately after handing over the answer sheet for **PART ONE**.

**TOTAL TIME: 3 HOURS** 


**TOTAL MARKS: 100** 

(PART ONE - 40; PART TWO - 60)

### PART ONE (Answer all the questions)

- 1. Each question below gives a multiple choice of answers. Choose the most appropriate one and enter in the "tear-off" answer sheet attached to the question paper, following instructions therein. (1x10)
- 1.1 -\*+ABC^-DE+FG is the prefix equivalent of
- A)  $(A+B)*C-(D-E)^{(F+G)}$
- B)  $(A+B*C)-(DE)^{\wedge}(F+G)^{\wedge}$
- C)  $A+B*C-D-E^{(F+G)}$
- D) None of the above
- 1.2 If the in-order and pre-order traversal of a binary tree are D,B,F,E,G,H,A,C and A,B,D,E,F,G,H,C respectively then, the post-order traversal of that tree is
- A) D.F.G.A.B.C.H.E
- B) F,H,D,G,E,B,C,A
- C) D,F,H,G,E,B,C,A
- D) C,G,H,F,E,D,B,A
- 1.3 Which of the following data structure may give overflow error, even though the current number of elements in it, is less than its size
- A) simple queue
- B) circular queue
- C) stack
- D) None of the above
- 1.4 "p" is a pointer to the structure. A member "mem" of that structure is referenced by
- A) \*p.mem
- B) (\*p).mem
- C) \*(p.mem)
- D) None of the above

1.5 Considering the following doubly linked list, the appropriate pointer operations to allow insertion of a node (T) at the indicated point are:



- A)  $T \rightarrow next = Q \rightarrow next; T \rightarrow prev = R \rightarrow prev; Q \rightarrow next = T; R \rightarrow prev = T;$
- B)  $Q \rightarrow \text{next} = T$ ;  $R \rightarrow \text{prev} = T$ ;  $T \rightarrow \text{next} = Q \rightarrow \text{next}$ ;  $T \rightarrow \text{prev} = R \rightarrow \text{prev}$ ;
- C)  $T \rightarrow \text{next} = Q \rightarrow \text{next}$ ;  $Q \rightarrow \text{next} = T$ ;  $T \rightarrow \text{prev} = R \rightarrow \text{prev}$ ;  $R \rightarrow \text{prev} = T$ ;
- D) Both A and C
- 1.6 Breadth First Search
- A) Scans all incident edges, before moving on to the next vertex.
- B) Scans adjacent unvisited vertices, as soon as possible.
- C) Same as back tracking.
- D) None of the above.
- 1.7 Which of the following recurrence relation best describes binary search?
- A) T(n) = T(n/2) + m
- B) T(n) = 2T(n) + m
- C) T(n) = 2T(n/2) + n
- D) None of the above
- 1.8 Which of the following is a hash function?
- A) Quadratic Probing
- B) Chaining
- C) Open addressing
- D) Folding
- 1.9 An adjacency matrix representation of a graph cannot contain information of
- A) nodes
- B) edges
- C) direction of edges
- D) parallel edges
- 1.10 The program section

```
int **p;
p = calloc(5, sizeof(int));
for(i=0; i<5; i++)
    p[i] = calloc(10, sizeof(int));</pre>
```

is equivalent to the declaration:

- A) int p[5][10];
- B) int p[10][5];
- C) int p[5][5];
- D) int p[10][10];

- 2. Each statement below is either TRUE or FALSE. Choose the most appropriate one and ENTER in the "tear-off" sheet attached to the question paper, following instructions therein. (1x10)
- 2.1 An algorithm of order  $O(\log_2 n)$  is better than another algorithm of order O(n).
- 2.2 Array is an example of a Non-Primitive data structure.
- 2.3 The inorder traversal of a transformed binary tree (transformed from the original to balance the height) and the original binary tree, give same results.
- 2.4 For a sufficiently small number of inputs, the sequential search is more efficient than the binary search.
- 2.5 The external path length of a binary tree is the product of the levels of all the external nodes of its extensions.
- 2.6 The M-way search tree of order n is a general tree in which each node has M or fewer subtrees, and contains one fewer key than it has subtrees.
- 2.7 Positive zero and negative zero are represented as two different numbers in 1's complement method.
- 2.8 All strictly binary trees are almost complete binary trees.
- 2.9 A string of length n bits can be used to represent numbers from 0 to 2<sup>n</sup>.
- 2.10 Structures may be passed as arguments to functions using the 'Call by value' technique.

# 3. Match words and phrases in column X with the closest related meaning/ word(s)/phrase(s) in column Y. Enter your selection in the "tear-off" answer sheet attached to the question paper, following instructions therein. (1x10)

| X    |                                                                             |    | Υ                           |  |  |
|------|-----------------------------------------------------------------------------|----|-----------------------------|--|--|
| 3.1  | In C, the pointer type that would best support a heterogeneous linked list. | A. | External nodes              |  |  |
| 3.2  | Binary representation of (256) <sub>10</sub>                                | B. | Balanced                    |  |  |
| 3.3  | Leaf Nodes                                                                  | C. | Internal search             |  |  |
| 3.4  | A digraph in which the outdegree equals the indegree                        | D. | 2 <sup>n</sup> -1           |  |  |
| 3.5  | Heap                                                                        | E. | 2 <sup>l</sup>              |  |  |
| 3.6  | Maximum number of nodes at level '1' in a binary tree [root at level '0']   | F. | Void pointer                |  |  |
| 3.7  | The height of a null tree                                                   | G. | Complete binary tree        |  |  |
| 3.8  | Most of the table to be searched is stored in auxiliary storage.            | H. | Secondary clustering        |  |  |
| 3.9  | Number of nodes in strictly binary tree with 'n' leaves                     | I. | O(mlogn)                    |  |  |
| 3.10 | Radix sort ['m' digits and 'n' elements]                                    | J. | 2 <sup>n</sup> -1 nodes.    |  |  |
|      |                                                                             | K. | Union                       |  |  |
|      |                                                                             | L. | External search.            |  |  |
|      |                                                                             | M. | Internal nodes.             |  |  |
|      |                                                                             | N. | -1                          |  |  |
|      |                                                                             | Ο. | (2 <sup>1</sup> -1)         |  |  |
|      |                                                                             | P. | Symmetric                   |  |  |
|      |                                                                             | Q. | 1000000                     |  |  |
|      |                                                                             | R. | Almost complete binary tree |  |  |
|      |                                                                             | S. | 10000000                    |  |  |
|      |                                                                             | T. | O(m*n)                      |  |  |

4. Each statement below has a blank space to fit one of the word(s) or phrase(s) in the list below. Enter your choice in the "tear-off" answer sheet attached to the question paper, following instructions therein. (1x10)

| A. | Probes                   | G. | Row - major | М. | Nesting depth         |
|----|--------------------------|----|-------------|----|-----------------------|
| B. | Overflow                 | Н  | log₂n-1     | N. | Midsquare             |
| C. | Sequential               | I  | Dangling    | Ο. | Two                   |
| D. | log <sub>2</sub> (n+1)-1 | J. | Folding     | P. | (2 <sup>p+1</sup> -1) |
| E. | Loops                    | K. | Direct      | Q. | One                   |
| F. | 2 <sup>(p-1)</sup>       | L. | Underflow   | R. | Null                  |

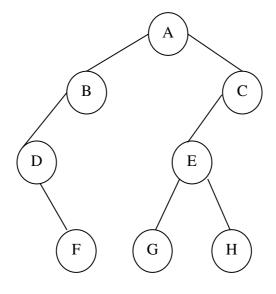
| 1.1  | A pointer is a pointer variable containing the address of a variable that has been freed.  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1.2  | The number of required by a hashing scheme is the average number of table positions        |  |  |  |  |  |
|      | that needs to be examined while searching for a particular value.                          |  |  |  |  |  |
| 1.3  | If the elements of a row are stored next to one another, the array is said to be stored in |  |  |  |  |  |
|      | order.                                                                                     |  |  |  |  |  |
| 1.4  | If a graph has no, then the diagonal of an adjacency matrix has all zeroes.                |  |  |  |  |  |
| 1.5  | condition in a linked list may occur when attempting to create a node when free space      |  |  |  |  |  |
|      | pool is empty.                                                                             |  |  |  |  |  |
| 1.6  | When the bucket size is, collisions and overflows occur simultaneously.                    |  |  |  |  |  |
| 1.7  | Besides the data fields, each node of doubly linked list contains at least more field(s).  |  |  |  |  |  |
| 4.8  | The hash method breaks up a key into several segments that are added or XORed              |  |  |  |  |  |
|      | together to form a hash value.                                                             |  |  |  |  |  |
| 1.9  | The depth of a complete binary tree, having 'n' nodes, is                                  |  |  |  |  |  |
| 1.10 | access of an element is not possible in linked list.                                       |  |  |  |  |  |

## PART TWO (Answer any FOUR questions)

5.
a) Show the steps of Heap-Sort (Using a Max – Heap) on the following list: 19, 26, 42, 24, 73, 4, 7, 69, 34

b) Write an algorithm to simulate the POP and PUSH operations in a stack implemented using a singly linked list.

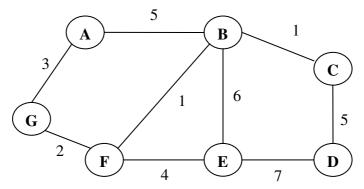
(8+7)


6.

- a) Write a non-recursive algorithm to generate the GCD of two integers.
- b) Analyze the time complexity of the Quick-Sort technique.
- c) Write an algorithm/program to print the information from each node in singly linked list.

(5+5+5)

7.

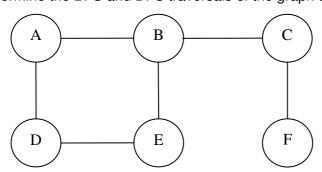

- a) Write the algorithm to convert an infix expression to its postfix equivalent. Trace the steps with a suitable example.
- b) Convert the following binary tree into an in-threaded tree.



(9+6)

8.

a) Use Kruskal's algorithm to extract the Minimum Spanning Tree of the graph given below.




b) Using the following traversals, construct the corresponding binary tree.

INORDER : HKDBILEAFCMJG PREORDER: ABDHKEILCFGJM

(8+7)

9.a) Determine the BFS and DFS traversals of the graph shown below.



- b) Differentiate between the Top-down and Bottom-up approaches to algorithm design.
- c) Let A be a two dimensional array declared as int A[10][15]. If the first element of array is stored at location 1025, find the address of element A[3][7], considering that the matrix is stored in:
  - i) Row Major Ordering
  - ii) Column Major Ordering

(5+5+5)