
ED600: Certified Embedded Software Engineer – Syllabus

Module -1 Embedded C and ARM Cortex Microcontroller

Objectives:

To set the required background in embedded system concepts, Embedded ‘C’ language such
as Memory management, Pointers, Data structures and architecture of the ARM Cortex
processor for highly deterministic real-time applications.

Outcomes:

After successful completion of the module, the students will be able to:

 Develop embedded application using Embedded C Programming
 Choose right ARM Cortex controller with Embedded C Programming for various

Applications

Duration: 140 Hours

Module topics:

‘C’ and Embedded-C

 Introduction to ‘C’ programming
 Storage Classes
 Data Types
 Controlling program flow
 Arrays
 Functions
 Memory Management
 Pointers
 Arrays and Pointers
 Pointer to Functions and advanced topics on Pointers
 Structures and Unions
 Data Structures
 Linked List
 Stacks, Queues
 Conditional Compilation
 Pre-processor directives
 File operations
 Bitwise operations
 Typecasting

Embedded Concepts

 Introduction to embedded systems

 Application Areas
 Categories of embedded systems
 Overview of embedded system architecture
 Specialties of embedded systems
 Recent trends in embedded systems
 Architecture of embedded systems
 Hardware architecture
 Software architecture
 Application Software
 Communication Software
 Development and debugging Tools

Introduction to ARM Cortex

 Architecture Introduction to 32-bit Processors
 The ARM Architecture
 Overview of ARM
 Overview of Cortex Architecture
 Cortex M4 Register Set and Modes
 Cortex M4 Processor Core
 Data Path and Instruction Decoding
 ARM Cortex M4 Development Environment
 Assembler and Compiler
 Linkers and Debuggers
 ARM-Thumb & Thumb2 instructions
 Mixing ARM & Thumb Instructions
 Memory hierarchy
 Memory Mapping
 Cache

Cortex M4 Microcontrollers & Peripherals

 Cortex M4 based controller architecture
 Memory mapping, Cortex M4 Peripherals – RCC
 GPIO
 Timer, System timer
 UARTs, LCD,ADC & PWM
 Cortex M4 interrupt handling – NVIC
 Application development with Cortex M4 controllers using standard peripheral

libraries

Module -2 Embedded Linux

Objective of the Course:

To Skilling the students in Configure, Deploying and Debugging the Linux OS onto a Target

Board to build a complete Embedded Product using Linux Kernel.

Outcome of the Course:

 After successful completion of this module, Students will be able to:

1. Configure Linux environment for ARM based Target Boards.

2. Configure Tool-Chain for ARM Platforms.

3. Demonstrate Linux Booting Process and to configure Linux Kernels on ARM based

Embedded Boards.

4. Develop ARM based Embedded Applications with Linux OS.

Duration: 70 Hours

Module topics:

1. Introduction:

 Basic Operating System Concepts
 History& Benefits of Linux
 Fundamentals of Embedded Linux OS
 Comparison of Embedded OS
 Embedded OS Tools and IDE
 Embedded Linux Applications and Products.

2. Architecture of Embedded Linux:

 What is Kernel?
 Task of kernels
 Types of kernels
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Address Spaces and Privilege Levels

 Memory Management
 System Calls
 Inter Process Communication (IPC) – Pipes, FIFo & Shared Memory
 Device Drivers
 Network

 3. Commands in Linux:
 Log In Linux system and Log in Remote Linux Systems- Getting Help
 Accessing & Working with the Command Line and Shell
 System Access, Entering Commands
 Boot Methods-Creating User Accounts &Managing Users
 Creating Groups & Managing Groups
 Directory Management
 File Permissions and Ownership
 vi Text Editor

4. Configuring the Linux Environment:

 Linux environment
 Types of Hosts
 Types of Host/Target Development Setups
 Types of Host/Target Debug Setups
 Embedded Environment Tools
 GNU Tool-chain Cross Compilers

5. Tool-chain: Configuration and Cross-Compilation:

 What is a tool-chain?
 Native vs. cross-compilation
 Toolchain Components
 Toolchain choices
 Using build root to build the toolchain
 Configuration options
 Adding path variables to startup scripts (.bashrc)
 The CROSS_COMPILE variable
 Validating the cross-compiler

6. Linux Bootloader & U-Boot:

 Boot-loader Phases
 U-boot – Embedded boot loader
 What does u-boot do?
 Navigating the u-boot sources
 Configuring and Cross-compiling u-boot

 Installing u-boot on the target
 Understanding u-boot commands
 Changing environment variables to setup kernel booting
 Transferring files to the target using tftp

7. Embedded Linux Kernel:
 Kernel Features
 Kernel Subsystems

 Memory Manager
 Scheduler
 Embedded Storage
 I/O Subsystem
 Network Subsystem

 Navigating the kernel sources
 Kernel Configuration
 Kernel Compilation
 Booting the kernel using u-boot
 Module compilation and Installation to RootFS
 Procedure for adding a new driver to the kernel
 Applying patches

8. Building Root File System:

 Introduction to File system
 Linux directory structure

 Organization and Important directories
 /dev file system

 What next after kernel booting
 init and startup scripts

 Downloading & Compiling RootFS
 RootFS in Flash/SD Card Storage

9. Porting OS in ARM Board:

 Kernel Compilation
 Booting the kernel using u-boot
 Porting Linux in ARM Board

10. Embedded Linux Application Programming

 Application Developments using Input Devices
 Application Developments using Output Devices
 Application Developments using Peripherals

Module -3 Embedded RTOS

Objectives:

To demystifying RTOS concept practically using Free RTOS and STM32 MCUs by

1. Understanding of RTOS concepts
2. Use cases for tasks, semaphores, queues, event flags and timers
3. Better insights of RTOS internal design and implementation
4. Design concepts needed to build an embedded system using RTOS
5. Applying taught concepts using one of the famous commercial open source RTOS.

Outcome of the Course:

After successful completion of this module, Students will be able to:

 List Step by step method to run RTOS on STM32 MCUs
 Demonstrate RTOS Scheduler with memory Management.
 Choose Right ways of Synchronizing between a task and an interrupt using semaphores.
 apply mutual exclusion between Tasks using Mutex services and semaphores
 Understand complete ARM Cortex M and FreeRTOS Priority model and its

configuration related information’s.

Duration: 70 Hours

Module topics:

 RTOS Introduction
 Setting Up the Environment-Downloading and Installing RTOS

 Creating RTOS based project for STM32 MCUs
 RTOS Task Creation
 Exercise: RTOS Hello World App and Testing on hardware
 RTOS app debugging using SEGGER System View Tools
 IDLE Task and Timer Svc Task of RTOS
 RTOS Scheduler
 Context switching
 RTOS Task Notification
 Overview of RTOS Memory manage, STACK and Synchronization services
 RTOS Kernel Coding Style
 RTOS Task Deletion
 ARM Cortex M Interrupt Priority and RTOS Task Priority
 Interrupt safe APIs and Task yielding
 RTOS Task States
 RTOS : Delay APIs and its Significance
 RTOS Hook Functions
 RTOS Scheduling Policies

 RTOS Queue Management
 Semaphore for Synchronization, mutual exclusion and Interrupt Management
 Mutual exclusion

Module -4 Internet of Things (IoT)

Objectives:

To equip the students with the information required in deploying and Delivering an IoT
Technologies suitable for Smart Industry.

Outcomes:

After successful completion of the module, the students will be able to:

 Implement an IoT application using Development Boards
 Develop problem solving capability using python scripts
 Choose right Data Analytic/ Machine learning tool for various IoT application
 Implement Various ML algorithms using Python.

Duration: 210 Hours

Module topics:

 IoT Concepts

 Introduction to IoT, WoT and M2M
 Basics of Internet & Review of TCP/IP
 IoT Layering concepts
 Introduction to Wireless Sensor Networks
 Routing Protocols in WSN
 Wireless PAN
 Different PAN standards - Bluetooth & Zigbee, GSM, Wifi
 IoT Development Boards
 Data logging

 IoT Data Analytics

 Python Programming

o An Introduction to Python
o Beginning Python Basics
o Python Program Flow
o Functions& Modules
o Exceptions Handling
o File Handling
o Classes in Python

 Data Science and Analytics

o An Introduction to Data Science and Analytics
o Data Analysis Using NumPy,

o Data Analysis Using Pandas
o Data Visualization – Pandas, Matplotlib, Seaborne, Plotly and

Cufflinks
 Statistical Learning

o Descriptive & Inferential Statistics,
o Probability Concept: Marginal, Joint & Conditional Probability,

Bayes Theorem
o Probability Distributions,
o Entropy &Information Gain,
o Regression & Correlation,
o Confusion Matrix, Bias & Variance

 Machine Learning
o Introduction to Machine Learning
o Linear Regression
o Logistic Regression
o K-Means Clustering
o Decision Tree
o Random Forest
o K-Nearest Neighbors
o Support Vector Machine
o Naive Bayes

Module -5 Embedded Protocols & Device Drivers

Objectives:

 To equip the students with the information required in embedded protocols and to
implement the device drivers in the Linux kernel.

Outcomes:

After successful completion of the module, the students will be able to:

 Demonstrate Different embedded protocols like SPI, I2C, USB and CAN.
 Choose right protocol for the different embedded applications.
 Build driver program for various devices in Linux kernel.

Duration: 105 Hours

Module topics:

Embedded Concepts:

 Embedded Protocols
 Overview of Embedded TTY, I2C protocols, SPI, CAN Processor Bus, USB
 Overview of Linux Device drivers
 Linux Drivers overview, Review of Kernel 'Embedded C' Programming, Device

driver developing Environment, the First driver.

 The Character driver: Name vs Number, Registration & the Cleanups, Kernel
Data Structures & File Operations, Linux Device Model & Bus Architectures,
Analog & Digital I/Os

 Low-level Accesses: Memory Access, Hardware Access.
 USB Drivers: Device & Driver Layout, USB Core, Driver & Device

Registration,
 USB & its Functionalities.
 Interrupts: Interrupts & IRQs, Soft IRQs, and Exceptions.
 Block Drivers
 File System Modules: Virtual File System, The Five Operation Sets, Interaction

with the Block Device
 Network Drivers

Module -6 Seminar and Case Study

Duration: 35 Hours

Module -7 Project Work

Duration: 210 Hours

