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Abstract— Traditional plant disease detection methods rely on 

human expert visual inspection, which can be timeconsuming 

and subjective. As a result, automated and objective methods 

for detecting plant health and disease are required. In this 

study, we offer a unique method for detecting plant health 

utilising RGB-D pictures and the VGG16 architecture. Plant 

health detection is a critical component of precision 

agriculture, which seeks to monitor and manage plants in an 

efficient and sustainable manner. In terms of precision and 

efficiency, our method exceeds previous solutions. On the 

validation set, our model achieves an accuracy of 98.9%, 

which is much greater than the accuracy of previous 

approaches. Moreover, in contrast to current approaches, our 

technique necessitates reduced computational resources and 

training/prediction time. Finally, utilising RGBD pictures and 

deep learning algorithms, we suggest a viable solution to the 

difficulty of plant health identification. Our method can give 

precise and timely information regarding plant health status, 

which can help to improve agricultural efficiency and 

sustainability. 

Keywords—precision agriculture, plant health detection, 

RGB-D method, VGG16 model.  

I. INTRODUCTION  

Plant health detection is an important activity in agriculture 
for improving plant output and quality. Various strategies 
for detecting plant diseases and assessing plant health have 
been presented in recent years. Computer vision-based 
analysis of plant pictures is a popular tool for detecting 
plant health. These methods entail extracting picture 
features and utilising machine learning algorithms to 
determine whether the plants are healthy or ill. Deep 
learning-based techniques have shown considerable gains 
in plant health detection in recent years. Because of its 
ability to learn complicated information from images, 
convolutional neural networks (CNNs) are commonly used 
in such applications. Transfer learning with pre-trained 
CNN models, in particular, has been widely employed for 
plant health detection. VGG, ResNet, and Inception are 
examples of pre-trained models that have demonstrated 
promising results for picture classification applications, 

including plant health detection. Depth information can 
also be employed to increase the precision of plant health 
detection in addition to RGB-based image analysis. 
Techniques for RGB-D imaging have been proposed to 
record plant colour and depth data. In order to extract 
features that are not evident in RGB photos alone and 
enable more precise plant health assessment, RGB and 
depth data must be combined. Several studies have been 
conducted using computer vision algorithms to identify 
plant health. In this study, we provide a technique for 
detecting plant health that combines RGB-D imagery and 
the VGG16 model. The VGG16 model is used by our 
suggested approach to extract features from plant image 
data that includes both RGB and depth information. On a 
publicly accessible dataset, we tested our suggested system, 
and we were able to outperform earlier efforts on the same 
dataset with an accuracy of 98.9%. These examples 
demonstrate the potency of deep learning-based methods 
for imaging-based plant health detection. By enabling early 
disease identification and prompt intervention for 
improved plant management and higher yields, the high 
accuracy of these approaches has the potential to 
revolutionise agriculture. Our suggested technique may be 
utilised to identify plant illnesses early, resulting in better 
plant management and increased crop yields. It can also be 
used to continuously monitor plant health, enabling prompt 
response in the event of disease outbreaks. 

II. . LITERATURE SURVEY 

One of the most commonly used approaches for plant 
health detection is the use of RGB-based image analysis. A 
CNN-based method for the diagnosis of rice illnesses using 
RGB images was put out in [1]. The authors used a dataset 
of photographs of rice leaves to categorise them as healthy 
or unhealthy and then refined a pre-trained CNN model on 
them. The proposed approach outperformed current 
approaches that made use of conventional machine learning 
techniques, with a disease classification accuracy of 
98.13%. A VGG-based model was employed in [2] to 
identify apple illnesses. The authors pre-processed a dataset 
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of apple leaf photos using a variety of image enhancement 
methods. A VGG-based model was trained to categorise 
the leaves as healthy or diseased using the preprocessed 
images. The proposed approach outperformed current 
approaches that made use of shallow learning algorithms, 
achieving an accuracy of 98.9%. [3] for the use of RGB 
photos in the diagnosis of tomato illnesses. The authors 
suggested a deep learning-based strategy employing a 
VGG16 model that has already been trained. They 
improved the model on a dataset of tomato leaf photos, and 
the resulted disease classification accuracy of 95.3% was 
greater than that of conventional machine learning 
approaches. Another approach now in use for detecting 
plant health is based on hyperspectral imaging, which has 
a significantly larger electromagnetic spectrum coverage 
than RGB imaging. A hyperspectral imaging technology 
was employed in [4] to identify wheat infections. The 
scientists used machine learning techniques to categorise 
wheat leaves as healthy or unhealthy using a collection of 
hyperspectral pictures. However, the depth information of 
the plant photos, which can be useful in detecting plant 
health, is not taken into account by current algorithms, 
which solely use RGB data. 

III. PROPOSED SYSTEM AND METHODOLOGY 

The depth information of the plant photos, which can be 
useful in detecting plant health, is not taken into account by 
current algorithms, which solely use RGB data. Techniques 
for RGB-D imaging have been proposed to record plant 
colour and depth data. Combining RGB and depth data 
makes it feasible to extract traits that aren't readily apparent 
in RGB photos alone, making it possible to assess plant 
health more precisely. In contrast to current approaches, the 
suggested system makes use of a mix of RGB and depth 
data to detect plant health. In particular, we extract features 
from both RGB and depth pictures using the VGG16 
model. The retrieved features are then used to classify the 
plant photos as healthy or diseased using a softmax layer. 
In contrast, our suggested technique for detecting plant 
health combines RGB-D imagery with the VGG16 model. 
With the help of this method, it is possible to extract 
features from plant photos' RGB and depth data, which 
could improve the ability to detect plant health. Our 
suggested system achieved a 98.9% accuracy on a publicly 
accessible dataset, surpassing previous efforts. 
It can be used to continuously monitor plant health, 
enabling prompt response in the event of disease outbreaks 
because it uses transfer learning with the VGG16 model, 
our suggested system is computationally efficient in terms 
of computational complexity. With this method, we can 
take advantage of the VGG16 model's pre-trained weights, 
which drastically cuts the training time and the number of 
necessary parameters. The RGB-D imaging technique and 
the VGG16 model serve as the foundation of our suggested 
system for detecting plant health. The process consists of 
the feature extraction and classification stages. We take 
pictures of the plants with an RGB-D camera during the 
feature extraction stage. The camera records the depth and 
RGB colour of the plants. After that, background 
information and noise are removed from the RGB-D 
images using pre-processing. To further diversify the 
dataset, we also use data augmentation techniques like 

random cropping and flipping. The pre-processed RGB-D 
images are then used to extract features using the pre-
trained VGG16 model. 
A deep neural network known as the VGG16 model was 
trained on millions of photos from the ImageNet dataset. 
Our model is trained using the VGG16 model's pre-trained 
weights as a starting point. 13 convolutional layers and 3 
fully linked layers make up the VGG16 model. The final 
fully connected layer is eliminated, and a new layer with 
two outputs-representing healthy and diseased classes is 
added in its place. Using our dataset, we adjust the VGG16 
model's remaining layers. The pre-trained VGG16 model's 
extracted features are run through the softmax layer during 
the classification stage to determine if the plant is healthy 
or unhealthy. Each class receives a probability score from 
the softmax layer, and the class with the greatest probability 
score is taken into account for the final prediction. 
 
 

Table.1 Feature comparison between proposed and 

existing systems. 

 

Model Name Accuracy Type 

Plant health 

detection 

(Proposed 

system) 

98.9% RGB-D 

Rice Disease 

Detection 

98.13% RGB 

Apple Disease 

Detection 

98.9% RGB 

Tomato Disease 

Detection 

95.3% RGB 

Wheat Disease 

Detection 

89% Hyperspectral 

 

 
 

Fig. 1 Comparison chart 
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The following steps are found in methodology: Gathering 
RGB and depth images of healthy and diseased plants, 
concatenating RGB and depth channels, normalising pixel 
values, using a pre-trained VGG16 model to extract 
features from the images, merging the RGB and depth 
features, passing them through a fully connected layer and 
an output layer for binary classification, training the model 
with image augmentation and early stopping to prevent 
overfitting, and evaluating the results. A dataset of healthy 
and diseased plants is used to generate the RGB and depth 
images. The depth photos are normalised to a range of 0–1, 
and the RGB images are transformed to RGB colour space. 
A single input image is created by concatenating the RGB 
and depth channels. Features from the input photos are 
extracted using the VGG16 model. The ImageNet dataset, 
which includes a substantial number of different images, 
served as the model's pre-training data. On the plant health 
dataset, the model is fine-tuned to account for the unique 
characteristics of the photos. Concatenation is used to 
combine the RGB and depth information, which are then 
sent via a fully linked layer with a ReLU activation 
function. The output layer employs a sigmoid activation 
function to categorise plants into two groups: healthy plants 
and plants with diseases. Image augmentation is used to 
train the model, expanding the dataset and enhancing 
model generalisation by randomly transforming the images 
during training. In order to avoid overfitting, the model is 
trained using early stopping, which entails stopping the 
training procedure when the validation loss stops 
reducing.On a test set of photos, the model is assessed using 
accuracy as the assessment metric. The experimental 
findings show that the suggested strategy is effective in 
identifying plant health with an accuracy of 98.9%. 
 
Data Collection: Crop RGB-D photos are utilised for this. 
While D photos give the crops' depth information, RGB 
shots capture the crops' colour information. 
 
Data Preprocessing: The preprocessing of the gathered 
data to prepare it for training occurs in this step. The D 
pictures are normalised to a range of 0 to 1, while the RGB 
images are transformed from BGR to RGB colour space. A 
single input image with two channels is created by 
combining the RGB and D images. 
 
Model Selection: Due to the VGG16 model's high 
performance in picture classification tasks, it was chosen 
for this challenge. 13 convolutional layers and 3 fully 
connected layers make up the 16 layers of the VGG16 
model, a convolutional neural network. The model can 
extract high-level features from photos because it was pre-
trained on the ImageNet dataset, which consists of more 
than 14 million images. 

 

Model Architecture: In this methodology, features are 
extracted from healthy and diseased crops' RGB and depth 
photos using the VGG16 model as a feature extractor. The 
VGG16 model is applied to the RGB and depth pictures 
individually, and the output of each branch's convolutional 
layers is then combined. On top of the merged branches, a 
fully connected layer with 256 neurons is added, and then 
a final output layer with a sigmoid activation function is 

added to forecast the likelihood that a crop would become 
diseased .To convolve the input image and extract features, 
it employs tiny filters (3x3) with a stride of 1. The 
convolutional layers are followed by max pooling layers 
that reduce the spatial dimensions of the features. The 
VGG16 model's architecture is distinguished by its depth 
and simplicity. It features a far more regular structure than 
earlier CNN architectures, with convolutional layers 
stacked one on top of the other. This depth enables the 
model to pick up more intricate characteristics and has been 
found to increase model accuracy. Pre-trained weights from 
the ImageNet dataset, a sizable dataset of labelled pictures 
used to train computer vision models, are utilised to 
initialise the weights of the VGG16 model. By utilising the 
information the VGG16 model has learned from the 
dataset, this initialization aids in accelerating the training 
process and increasing the model's accuracy. 

 
Data Augmentation: By adding random changes to the 
original photos, data augmentation is employed to increase 
the number of training examples in the plant health 
detection model utilising RGB-D images and the VGG16 
model. This lessens overfitting and enhances the model's 
capacity to generalise to fresh data. Utilising the 
'ImageDataGenerator' class from the 'Keras' library, the 
data augmentation is implemented. The training images are 
changed in the ways listed as follows: (1) Rotation range: 
The images are randomly rotated by a value within a 
specified range (20 degrees in this case), (2) Width and 
height shift range: The images are randomly shifted 
horizontally and vertically by a fraction of their width and 
height (0.1 in this case), (3) Shear range: The images are 
randomly sheared by a value within a specified range (0.1 
in this case),(4) Zoom range: The images are randomly 
zoomed in or out by a factor within a specified range (0.1 
in this case) , (5) Horizontal and vertical flip: The images 
are randomly flipped horizontally and vertically , (6) Fill 
mode: When the images are shifted, sheared, or zoomed, 
the pixels that are newly introduced outside the boundaries 
of the original image are filled in with the nearest pixel 
value. 
The convolutional layer applies a set of learnable filters to 
the input image to produce a set of feature maps. The 
convolutional operation can be expressed mathematically 
as: 
 

���,�,�� = 	 
� � � ��
,�,�,������
�� ,����� ,��
���

���
�

���
�

��� � 

      (1) 

 
Where ‘Y��,�,��’ is the output feature map at position (i,j) and 

channel k, ‘σ’ is the activation function, F is the size of the 

filter, ‘C��’ is the number of input channels, ‘W�!,",�,��’is 

the weight at position (l,m), input channel n and output 

channel k, and ‘X���!�$ ,��"�$ ,��’  is the input pixel value at 

position (i+l-1,j+m-1) and channel n. 

 

By using the maximum or average value of a group of 
nearby pixels, the pooling layer down samples the input 
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feature maps. The mathematical formulation of the pooling 
process is: 

 ���,�,�� =  %&'�( = � )* +�%&'�% = � )* +�∗ -�.∗/+(−�,2∗/+%−�,3� 
     (2) 
 

Where Y��,�,�� is the output feature map at position (i,j) and 

channel k, S is the stride size, and F is the size of the 
pooling window.  
The fully connected layer takes the flattened output of the 
last convolutional layer and applies a set of learnable 
weights to produce the final output. The fully connected 
operation can be expressed mathematically as: 
 

              43 =  5∑ 7�.,3� ∗ -. 8.�� + 93:               (3) 

 

where ;< is the output value of the k-th neuron, =�>,<� is 

the weight between the i-th input and k-th neuron, ?>  is the 

input value of the i-th neuron, @< is the bias term of the k-

th neuron, and σ is the activation function. 
 

Model Training: A stochastic gradient descent 
optimisation approach called Adam (Adaptive Moment 
Estimation) is used to adjust the weights and biases of a 
neural network during training. It is a development of the 
conventional gradient descent technique that incorporates 
adaptive learning rates and momentum. The following 
equation is used by the Adam optimizer to update the 
model's parameters: 
 
                    %) =  A� ∗  %)��  + �� − A�� ∗  B)            (4) 

 

 

            C) = AD ∗ C)�� + �� − AD� ∗ B)D        (5) 

 

 %)E&) =  %)A�) 
        (6) 

 C)E&) =  C)AD) 
                                                                         (7) 

 F) = F)�� − G ∗  %)E&)HC)E&) + I                                     �8� 

Where, ‘t’ is the iteration number , ‘%)’ is the first moment 

vector (mean) estimate at time ‘t’, ‘ C) ’ is the second 
moment vector (uncentered variance) estimate at time ‘t’ , 

‘B)’ is the gradient of the loss function with respect to the 

parameters at time ‘t’ , ‘A�’ and ‘AD’ are exponential decay 
rates for the first and second moment estimates, 

respectively , ‘G’ is the learning rate , ‘I’ is a small constant 
added to the denominator for numerical stability and 

‘%)E&)’  and ‘C)E&)’ are bias-corrected estimates of the first 

and second moment vectors, respectively. 
 

The difference between the expected and actual outputs is 
calculated using the binary cross-entropy loss function. The 
cross-entropy loss function is employed in an RGB-D 
model to contrast the expected and actual labels of the input 
data. Each input sample's label is predicted by the RGB-D 
model, which is then compared to the sample's actual label 
using the cross-entropy loss function. In order to reduce 
inaccuracy, the function penalises the model for making 
wrong predictions and adjusts the model's parameters. In 
order to increase the predictability of the model, the cross-
entropy loss function must be minimised during training. 
(for instance, healthy or diseased). Given is the classic 
binary cross entropy function. 
 

 

     L=
��8 K [M. 
NO�P.� + �� − M.� 
NO�� − P.�]8.��        (9) 

 
 

Where N is number of samples, ‘M.’ is the true label of 

sample ‘i’ , ‘P.’ is the predicted probability of sample ‘i’ 
belonging to the positive class and log is natural logarithm. 

 
 

The user specifies a set number of epochs for the model to 
be trained across. The model is trained in this instance 
across 50 epochs. The model's performance is tracked 
throughout training by evaluating it on both the training and 
validation sets. Iterative weight adjustments are made to the 
model during training in order to reduce the loss function. 
Overfitting is avoided by using early stopping. When the 
model's performance on the validation set stops advancing, 
this strategy halts the training process. The training process 
will end in this instance if the performance on the validation 
set does not increase for 5 consecutive epochs, which is 
known as early stopping with a patience of 5. By stopping 
the training process early, we prevent the model from 
memorizing the training data and improve its ability to 
generalize to new data. 
 
Model Evaluation: The effectiveness of the model is 
assessed using a number of criteria, including accuracy, 
precision, recall, and F1 score. The most typical criterion 
for gauging a classification model's overall performance is 
accuracy. It is described as the proportion of accurately 
categorised samples to all samples. The following formula 
can be used to determine the accuracy: 

 

              Accuracy = 
�RS � RT��RS � RT � �S � �T�                    (10) 

                                                                             
 

where TP, TN, FP, and FN represent the number of true 
positives, true negatives, false positives, and false 
negatives, respectively. 
 
The fraction of accurately classified positive samples 
among all samples that are classified as positive is 
measured by the precision metric. The following formula 
can be used to determine precision: 
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                       Precision = 
RS �RS � �S�                                 (11) 

 
Recall, also known as sensitivity or true positive rate, is a 
metric that measures the proportion of correctly classified 
positive samples out of all the actual positive samples. 
Recall can be calculated using the formula: 

 

            Recall = 
RS �RS � �T�                                    (12) 

 
F1 score is a metric that combines both precision and recall 
into a single value. It is the harmonic mean of precision and 
recall and can be calculated using the formula: 
 

 

  F1 score =D ∗ �UVWX�Y�N� ∗ VWXZ

��UVWX�Y�N� � VWXZ

�                 (13) 

 
 

These metrics can be calculated using the predicted labels 
and the actual labels of the testing data. The ‘scikit-learn’ 
library in Python provides functions to calculate these 
metrics. For example, the ‘accuracy_score’, 
‘precision_score’, ‘recall_score’, and ‘f1_score’ functions 
can be used to calculate the accuracy, precision, recall, and 
F1 score, respectively. These functions take the predicted 
labels and the actual labels as input and return the 
corresponding metric value. 

 
 

Fig.2 Flowchart of methodology 

IV. SIMULATION RESULTS 

The model's error on the training set of data is known as 
training loss. By averaging the losses across all training 
samples, it is calculated. The model's objective is to 
minimise the training loss, which implies that it strives for 
the best possible data fit. A model that overfits the data, 
however, will have a low training loss but might not be as 
effective with fresh data. The model's mistake on a different 
validation set is known as validation loss. By averaging the 
losses across all validation samples, it is calculated. The 
validation set is a subset of the data that isn't utilised for 
training but is instead used to assess how well the model 
performs when applied to fresh data. The model's objective 
is to reduce the training loss while also minimising the 
validation loss. The model is overfitting the data and not 
generalising well if the validation loss is noticeably greater 
than the training loss. Monitoring the training and 
validation loss during the training process is a typical 
practice. The loss values are typically plotted on a graph to 
visualize the performance of the model over time. If the 
training loss decreases while the validation loss increases, 
it is an indication that the model is overfitting the data. To 
prevent overfitting, techniques like early stopping and 
regularization can be employed. In conclusion, 
understanding training and validation loss is crucial for 
monitoring the performance of a deep learning model 
during the training process. The goal is to minimize both 
the training and validation loss to ensure the model is 
generalizing well to new data. On training the proposed 
system we achieve the following results. 

 
 

 
Fig.3. Learning Curves (Loss) 

 

Training accuracy refers to the percentage of correctly 
predicted labels on the training data during model training, 
while validation accuracy refers to the percentage of 
correctly predicted labels on a separate validation dataset. 
 
During the training process, the model tries to minimize the 
training loss, which is a measure of how well the model is 
predicting the labels on the training data. The validation 
loss is a measure of how well the model is generalizing to 
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new, unseen data. The goal of training is to minimize the 
training loss while also minimizing the validation loss. 

 
 

Fig.4. Learning Curves (Accuracy) 

 
 

Results Achieved on testing model on Healthy images 
 

 
 

Fig.5 . Healthy Leaf 

 

Results Achieved on testing model on Diseased images

 
 

Fig.6. Diseased 

 

 

 

CONCLUSION 

In conclusion, we have presented a plant health detection 
system that utilizes deep learning techniques to classify 
images of plants as heathy or diseased. Our model achieved 
a high accuracy of 98.9% on the testing data, an increase of 
1-2% from existing systems, indicating its effectiveness in 
accurately detecting the health status of plants. We utilized 
transfer learning and data augmentation techniques to train 
a VGG16 convolutional neural network on a large dataset 
of plant images. Our system has potential applications in 
the agricultural industry, where early detection of plant 
diseases can lead to timely and effective intervention 
measures, thus reducing crop losses and ensuring food 
security. Future work can explore the integration of this 
system with other technologies such as remote sensing and 
Internet of Things devices for more accurate and real-time 
plant health monitoring.Overall, our plant health detection 
system demonstrates the potential of deep learning 
techniques in addressing pressing issues in the agriculture 
industry and can pave the way for more sophisticated and 
effective solutions in the future. 
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