## B0-R4: BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100
1.
a) Express $\frac{2+6 \sqrt{3 i}}{5+\sqrt{3 i}}$ in the polar form $r(\cos \theta+i \sin \theta)$.
b) Evaluate $\lim _{x \rightarrow 0} \frac{x e^{x}-\log (1+x)}{x^{2}}$.
c) if $a, b, c$ are all different. Then evaluate $\left|\begin{array}{ccc}a-b-c & 2 b & 2 c \\ 2 a & b-c-a & 2 c \\ 2 a & 2 b & c-a-b\end{array}\right|$.
d) Using Cauchy integral test, test the convergence of the series $\Sigma \frac{n}{\left(n^{2}+1\right)^{2}}$.
e) Solve $x \sin x \frac{d y}{d x}+(x \cos x+\sin x) y=\sin x$.
f) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
g) Determine a unit vector perpendicular to each of the vectors $2 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $3 \hat{\imath}+4 \hat{\jmath}-\hat{k}$ and the sine of the angle between them.
2.
a) Find the values of $\mu$ and $\lambda$ if the rank of $A=\left|\begin{array}{cccc}1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & \lambda & \mu\end{array}\right|$ is 2 .
b) Use De moivre's theorem to solve the equations $x^{4}-1=0$.
c) Verify Langrange's Mean Value Theorem for the function $f(x)=(x-1)(x-2)(x-3)$ in (1, 4).
3.
a) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
b) Show that the matrix $A=\frac{1}{\sqrt{6}}\left|\begin{array}{ccc}\sqrt{2} & -1 & \sqrt{3} \\ \sqrt{2} & 2 & 0 \\ \sqrt{2} & -1 & -\sqrt{3}\end{array}\right|$ is orthogonal.
4.
a) Find the maximum and minimum values of $\frac{x}{2}-\sin x$ in $0<x<2 \pi$.
b) Find the asymptotes of the curve $\mathrm{y}=\frac{x^{3}}{x^{2}+x-2}$.
c) Evaluate $\int \frac{x^{2} \tan ^{-1} x^{3}}{1+x^{6}} d x$.
5.
a) Solve the system of equations

$$
\begin{aligned}
x+y+z & =7 \\
x+2 y+3 z & =16 \\
x+3 y+4 z & =20 \quad \text { by Cramer's rule. }
\end{aligned}
$$

b) Find the area of the smaller portion enclosed by the curves $y^{2}=8 x$ and $x^{2}+y^{2}=9$.
6.
a) Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=(1-x)^{2}$.
b) Test the converges of the series

$$
\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+----.
$$

c) Find the length of the loop of the curve $x=t^{2}, y=t-\frac{t^{3}}{3}$.
7.
a) Apply Maclaurin's theorem to show that

$$
\tan \left(\left(\frac{\pi}{4}+x\right)=1+2 x+2 x^{2}+\frac{8}{3} x^{3}+\frac{10}{4} x^{4}+------.\right.
$$

b) Find the equation of the hyperbola whose focus is ( $-1,1$ ), eccentricity $=3$ and the equation of the corresponding directrix is $x-y+3=0$.
c) Find the vector equation of the line joining the points $\hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $3 \hat{k}+2 \hat{\jmath}$.
(6+6+6)

