NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
3.

a) Express the complex rational expression $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ in the form of $x+i y$, such that x and y are real numbers.
b) Evaluate $\lim x \log (\sin x)$.

$$
x \rightarrow 0
$$

c) Show that the matrix $\frac{1}{3}\left[\begin{array}{rrr}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ is an orthogonal matrix.
d) Discuss the convergence or divergence of the following series:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots \cdots \cdots \cdots \cdots \cdots
$$

e) Solve the differential equation $\frac{d y}{d x}+\frac{y}{x}=y^{2}$.
f) Find the length of the curve $y=\log (\sec x)$ between the points $x=0$ and $x=\frac{\pi}{3}$.
g) Using the properties of the definite integrals, evaluate, $\int_{0}^{\pi / 2} \frac{\cos x-\sin x}{1+\sin x \cos x} d x$.
2.
a) Find the inverse of a matrix $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ by the Gauss Elimination method. Show the steps involved in it.
b) Let α and β be the roots of the equation $a \tan \theta+b \sec \theta=c$. Convert the given equation into a quadratic equation in $\tan \theta$, and then prove that $\tan (\alpha+\beta)=\frac{2 a c}{a^{2}-c^{2}}$.
3.
a) Find all the points of local maxima and minima of the function

$$
f(x, y)=x^{3}+y^{3}-3 x y .
$$

b) Find all the asymptotes of the curve $2 x(y-3)^{2}=3 y(x-1)^{2}$.
4.
a) Find the area of the region bounded between the parabola $y^{2}=2 x$ and the line $y=4 x-1$.
b) Find the first three terms of the Taylor's series expression of $\sin x$ about $x=\frac{\pi}{2}$.
5.
a) Find the volume of solid generated by the revolution of the curve $y=\sin x$ from $x=0$ to $x=2 \pi$ about x-axis.
b) Let $f(x)=\frac{x}{1+e^{1 / x}}, x \neq 0, f(0)=0$. Prove that f is continuous but not differentiable at $x=0$.
c) Solve the differential equation $(x+1) \frac{d y}{d x}-y=e^{x}(x+1)^{2}$.
6.
a) Find the unit vector perpendicular to the plane of two vectors $3 i+2 j-k$ and $12 i+5 j-5 k$. Also, determine the sine of the angle between them.
b) Find the equation of the parabola whose focus is the point $(2,3)$ and whose directrix is the straight line $x-4 y+3=0$. Also find the length of its latus rectum.
7.
a) Find the characteristic roots and characteristic vectors of the matrix $\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$.
b) Find the equation of the circle which passes through the points ($1,-2$) and ($4,-3$) and its centre lies on the line $3 x+4 y=7$.

