C0-R4.B1: ELEMENTS OF MATHEMATICAL SCIENCES

NOTE :

- Answer question 1 and any FOUR from questions 2 to 7. 1.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1. (a) Evaluate the determinant of matrix A

$$A = \begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$$

- (b) Change to Cartesian coordinates the equation
 - $r = a \sin \theta$ and (i) (ii) $r^{\frac{1}{2}} = a^{\frac{1}{2}} \cos \frac{\theta}{2}$
- Find the asymptotes of the graph of $(x) = \frac{x^2 3}{2x 4}$. (c)
- (d)
- Evaluate the integral (i) $\int \sqrt{4t 1} dt$ (ii) $\int x^2 \sin(x^3) dx$. Determine whether the series $\frac{3}{4} + \frac{5}{9} + \frac{7}{16} + \frac{9}{25} + \cdots$ converge or diverge. (e)
- *X* have the probability density function $f(x) = 0.75(1 x^2), -1 \le x \le 1$ Let (f) and zero elsewhere. Find the probabilities.

(i)
$$P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right)$$

(ii) $P\left(\frac{1}{4} \le X \le 2\right)$

Compute the probability of obtaining at least two "Six" in rolling a fair die 4 times. (g) (7×4)

Find the eigenvalues and eigenvectors of matrix $A = \begin{vmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{vmatrix}$ 2. (a)

(b) Find (i)
$$\lim_{x \to +\infty} \left(\sqrt{x^6 + 5} - x^3 \right)$$
 (ii) $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 2}}{3x - 6}$

Find the equation to the tangents to the circle $x^2 + y^2 - 6x + 4y = 12$ 3. (a) (i) which are parallel to the straight line 4x + 3y + 5 = 0.

- (ii) Find the vertex, axis, focus, and latus rectum of the parabola $4y^2 + 12x - 20y + 67 = 0.$
- Solve the system of equations using Gauss elimination (b)
 - x + y + 2z = 92x + 4y - 3z = 13x + 6y - 5z = 0

C0-R4.B1

(9+9)

(9+9)

4. (a) (i) Let u = (2, -1, 3) and a = (4, -1, 2). Find the vector component of u along a and vector component of u orthogonal to a.

- (ii) Find the vector product $v = a \times b$, where a = (1,1,0) and b = (3,0,0)
- (b) Evaluate

(i)
$$\int (x^2 + 2x - 3)^2 (x + 1) dx$$

(ii)
$$\int \frac{\pi/2}{\pi/4} \cot\theta \csc^2 \theta d\theta$$

(9+9)

5. (a) Investigate the convergence of series (i) $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$ (ii) $a_n = \begin{cases} \frac{n}{2^n}, n \text{ odd} \\ \frac{1}{2^n}, n \text{ even} \end{cases}$

(b) Find the Taylor series and Taylor polynomials generated by $f(x) = \cos x$ at x = 0.

(9+9)

(9+9)

- 6. (a) (i) A box contains 10 screws, three of which are defective. Two screws are drawn at random. Find the probability that neither of the two screws is defective.
 - (ii) If the probability of producing a defective screw is p = 0.01, what is the probability that a lot of 100 screws will contain more than 2 defectives ?
 - (b) In a production of iron rods let the diameter *X*be normally distributed with mean 2 in. and standard deviation 0.008 in.
 - (i) What percentage of defectives can we expect if we set the tolerance limits at 2 ± 0.02 in.?
 - (ii) How should we set the tolerance limits to allow for 4% defectives ?

7. (a) Five independent measurements of the point of inflammation (flash point) of Diesel oil gave the values (in ${}^{0}F$) 144 147 146 142 144. Assuming normality, determine a confidence interval for the mean.

(b) Using the given sample, test that the corresponding population has a Poissondistribution. x is the number of alpha particles per 7.5-s intervals observed, and a(x) is the absolute frequency number of time periods during which exactly x particles were observed. Use $\alpha=0.05$

x	0	1	2	3	4	5	6
a	57	203	383	525	532	408	273
x	7	8	9	10	11	12	≥ 13
а	139	45	27	10	4	2	0

(9+9)