NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100
1.
a) Solve the equation $Z^{4}+1=0$ using De - Moivre's Theorem.
b) Find $\lim _{x \rightarrow 0}\left(x^{n} \log x\right)$.
c) Show that the matrix is orthogonal matrix: $\left[\begin{array}{ccc}-2 / 3 & 1 / 3 & 2 / 3 \\ 2 / 3 & 2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3 & 2 / 3\end{array}\right]$.
d) Discuss the convergence of the series $\frac{x}{1+x}+\frac{x^{2}}{1+x^{2}}+\frac{x^{3}}{1+x^{3}}+\cdots \quad(x>0)$.
e) Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.
f) Determine the length of the cardiode $r=a(1-\cos \theta)$ lying outside the circle $r=a \cos \theta$.
g) Evaluate $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x$.
2.
a) Find the rank of the following matrix:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 7 \\
3 & 6 & 10
\end{array}\right]
$$

b) Solve the following system of equations using Cramer's rule:

$$
\begin{aligned}
& x-y+z=4 \\
& 2 x+y-3 z=0 \\
& x+y+z=2
\end{aligned}
$$

c) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x d x}{\sin x+\cos x}$.
3.
a) Find the asymptotes of the curve $x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0$.
b) Find the absolute maximum or minimum values of the function

$$
\begin{equation*}
f(x)=\sin x(1+\cos x), \quad 0 \leq x \leq 2 \pi . \tag{9+9}
\end{equation*}
$$

4.

a) For the Taylor's polynomial approximation of degree $\leq n$ about the point $\mathrm{x}=0$ for the function $f(x)=e^{x}$, determine the value of n such that the error satisfies $\left|R_{n}(x)\right| \leq 0.005$, when $-1 \leq x \leq 1$.
b) Find the area enclosed between the curves $x^{2}=4 y$ and the straight line $x=4 y-2$.
5.
a) Test the convergence of the series $\sum_{1}^{\infty}\left(\sqrt{n^{4}+1}-\sqrt{n^{4}-1}\right)$.
b) Let C be a curve defined parametrically as $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta, 0<\theta<\pi / 2$. Determine a point P on C, where the tangent to C is parallel to the chord joining the points ($a, 0$) and ($0, a$).
c) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=e^{-x}$.
6.
a) Find the equation of the parabola that is symmetric about the y - axis, has its vertex at the origin, and passes through the point $(5,2)$.
b) Find the equation for the tangent line to the Folium of Descartes $x^{3}+y^{3}=3 x y$ at the point $(3 / 2$, $3 / 2$).
c) Find the angle between the vector $u=\hat{\imath}-2 \hat{\jmath}+2 \widehat{k}$ and $v=-3 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$.
7.
a) Find the parametric equations of the line L passing through the points $P_{1}(2,4,-1)$ and $P_{2}(5,0,7)$. Where does the line intersect in the $x y$ - plane?
b) Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

and test for the orthogonality of the vectors.

