B0-R4: BASIC MATHEMATICS

NOTE:

1. 2.	Answer question 1 and any FOUR from questions 2 to 7. Parts of the same question should be answered together and in the same sequence.
Time: 3 HoursTotal Marks: 100	
1. a) b)	Solve the equation Z ⁴ +1=0 using De - Moivre's Theorem. Find $\lim_{x\to 0} (x^n \log x)$.
c)	Show that the matrix is orthogonal matrix: $\begin{bmatrix} -2/3 & 1/3 & 2/3 \\ 2/3 & 2/3 & 1/3 \\ 1/3 & -2/3 & 2/3 \end{bmatrix}$
d) e) f) g)	Discuss the convergence of the series $\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \cdots$ $(x > 0)$. Solve $x^2y dx - (x^3 + y^3) dy = 0$. Determine the length of the cardiode r=a $(1 - \cos\theta)$ lying outside the circle r = a $\cos\theta$. Evaluate $\int_0^1 \frac{\log(1+x)}{1+x^2} dx$.
2	(7x4)
a)	Find the rank of the following matrix: $ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix} $
b)	Solve the following system of equations using Cramer's rule: x-y+z=4 2x+y-3z=0 x+y+z=2
c)	Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x dx}{\sin x + \cos x}$. (4+5+9)
3. a) b)	Find the asymptotes of the curve $x^3 + 3x^2y - 4y^3 - x + y + 3 = 0$. Find the absolute maximum or minimum values of the function $f(x) = \sin x(1 + \cos x), 0 \le x \le 2\pi$. (9+9)
4. a) b)	For the Taylor's polynomial approximation of degree \leq n about the point x=0 for the function $f(x)=e^x$, determine the value of n such that the error satisfies $ R_n(x) \leq 0.005$, when $-1 \leq x \leq 1$. Find the area enclosed between the curves $x^2 = 4y$ and the straight line $x = 4y - 2$. (9+9)
5. a) b)	Test the convergence of the series $\sum_{1}^{\infty} (\sqrt{n^4 + 1} - \sqrt{n^4 - 1})$. Let C be a curve defined parametrically as x = a cos ³ θ , y = a sin ³ θ , 0 < θ < $\pi/2$. Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).
c)	Solve $\frac{1}{dx^2} - 2\frac{1}{dx} + 5y = e^{-x}$.

6.

- a) Find the equation of the parabola that is symmetric about the y axis, has its vertex at the origin, and passes through the point (5, 2).
- b) Find the equation for the tangent line to the Folium of Descartes $x^3+y^3 = 3xy$ at the point (3/2, 3/2).
- c) Find the angle between the vector $\mathbf{u} = \hat{\imath} 2\hat{\jmath} + 2\hat{k}$ and $\mathbf{v} = -3\hat{\imath} + 6\hat{\jmath} + 2\hat{k}$.

(6+6+6)

7.

- a) Find the parametric equations of the line L passing through the points $P_1(2, 4, -1)$ and $P_2(5, 0, 7)$. Where does the line intersect in the xy plane?
- b) Find the eigen values and eigen vectors of the matrix

$$\mathsf{A} = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

and test for the orthogonality of the vectors.

(9+9)