BE3-R4: E-BUSINESS

NOTE:

| 1. | Answer question 1 and any FOUR from questions 2 to 7. |
| 2. | Parts of the same question should be answered together and in the same sequence. |

Time: 3 Hours **Total Marks:** 100

1.
 a) What is an Internet cookie? How do cookies make personalized Web pages possible?
 b) Explain the concept of micro-payment system. Give two applications of micro-payment in online transactions.
 c) What is Tort Law? Is this law applicable in an online environment?
 d) Explain the concept of IP Spoofing.
 e) Discuss different types of e-auctions with examples.
 f) Differentiate between consumer - to - business and consumer - to- consumer e-business models with examples.
 g) Explain the concept of client server architecture.

 (7x4)

2.
 a) Describe the function of different components of web based e-commerce system architecture.
 b) Explain how the Domain Name System (DNS) maps a domain name to an IP address.

 (12+6)

3.
 You are planning to launch an online business where customers can sell or purchase digital goods (music, software, pdf files, documents, etc.). What kind of illegal activities can take place in this environment. Discuss various precautions you need to take to ensure that you will not enter in any legal dispute.

 (18)

4.
 You are planning to launch online business for selling flowers and gifts throughout India. Customers can order to send bouquets and gifts to their loved ones on special occasions. What are the possible online payments methods that can be used for this business? Explain each payment method in detail.

 (18)

5.
 How has e-commerce transformed marketing? List and explain various e-retailing models with examples.

 (18)

6.
 How important is it for an organization to implement a firewall? What are different types of firewalls an organization can implement? Explain the function of each in detail.

 (18)

7.
 Explain following terms:
 a) Generation and verification of digital signature
 b) RSA encryption algorithm

 (9+9)