CE1.1-R4: DIGITAL SIGNAL PROCESSING

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
3.

a) Sketch the pole-zero plot of the following z-transforms and shade the Region Of Convergence (ROC)

$$
X_{1}(z)=\frac{1-\frac{1}{2} z^{-1}}{1+2 z^{-1}}, \mathrm{x}_{1}[\mathrm{n}] \text { is non-causal sequence. }
$$

b) Find Impulse response $\mathrm{h}[\mathrm{n}]$ of the stable linear time-invariant system, whose input and output satisfy the difference equation:

$$
y[n]-0.5 y[n-1]=x[n]-0.25 x[n-1] .
$$

c) Determine Fourier transform of the signal

$$
x[n]=a^{|n|}, \quad-1<a<1
$$

d) What is the condition to avoid time domain aliasing to recover $x[n]$ from its periodic extension in Discrete Fourier Transform (DFT)? What is the significance of zero padding in DFT?
e) Describe properties of Region of Convergence (ROC) of z-transform.
f) Draw direct-form structure of Finite Impulse Response (FIR) system represented as a nonrecursive difference equation:

$$
y[n]=\sum_{k=0}^{M-1} h(k) x(n-k)
$$

g) Design a single-pole low pass digital filter with a $3-\mathrm{dB}$ bandwidth of 0.2π, using Bilinear transformation applying to the analog filter:

$$
\begin{equation*}
H(s)=\frac{\Omega_{c}}{s+\Omega_{c}} \tag{7x4}
\end{equation*}
$$

2.

a) Determine the z-transform and its ROC of the following sequence:
i) $\quad x[n]=(1+n) u[n]$
ii) $\quad x[n]=(-1)^{n} 2^{-n} u[n]$
b) A causal Linear Time Invariant(LTI) system with impulse response $\mathrm{h}[\mathrm{n}]$ and system function:

$$
H(z)=\frac{\left(1-2 z^{-1}\right)\left(1-4 z^{-1}\right)}{z\left(1-0.5 z^{-1}\right)}
$$

i) Draw a direct form II flow graph.
ii) Draw the transposed form of the flow graph in Part i).
c) Consider the following system, sketch and label the Fourier transform of $y_{c}(t)$ for the following two cases.
i) $\quad 1 / \mathrm{T}_{1}=2 \times 10^{4}, 1 / \mathrm{T}_{2}=10^{4}$.
ii) $\quad 1 / \mathrm{T}_{1}=10^{4}, 1 / \mathrm{T}_{2}=2 \times 10^{4}$.

(6+6+6)
3.
a) Determine and sketch for the linear convolution $y[n]$ of the signals:

$$
\begin{aligned}
& x[n]=\left\{\begin{array}{lr}
\frac{1}{3} n, & 0 \leq n \leq 6 \\
0, & \text { elsewhere }
\end{array}\right. \\
& h[n]= \begin{cases}1, & -2 \leq n \leq 2 \\
0, & \text { elsewhere }\end{cases}
\end{aligned}
$$

b) Describe mathematically the conversion of lattice coefficients to direct-form filter coefficients in Finite Impulse Response Lattice structure.
c) A real finite-length sequence,

$$
x[n]=\{1,3 / 4,1 / 2,1 / 4\}
$$

The 4-point DFT of $x[n]$ is denoted as $X[k]$. Plot the sequence $y[n]$ whose DFT is $Y[k]=W_{4}^{3 k} X[k]$.
4.
a) Determine the response of the relaxed system characterized by the impulse response:

$$
h[n]=\left(\frac{1}{2}\right)^{n} u(n)
$$

and to the input signal

$$
x[n]= \begin{cases}1, & 0 \leq n<10 \\ 0, & \text { Otherwise }\end{cases}
$$

b) Explain Machine Vision Or Video Segmentation.
c) A signal $x[n]$ is discrete time sequence

$$
x[n]=\{-1,2,-3,2,-1\}
$$

With its Fourier Transform $X(\omega)$. Determine the following quantities, without explicitly computing $X(\omega)$.
i) $\quad X(\pi)$
ii) Angle of $X(\omega)$
iii) $\quad \int_{-\pi}^{\pi} X(\omega) d \omega$
(8+6+4)
5.
a) Explain the Application of DSP in Global Positioning System (GPS).
b) The complex sequence:

$$
x[n]=\left\{\begin{array}{lc}
e^{j w_{0} n}, & 0 \leq n \leq N-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

i) Find the Fourier transform $X(\omega)$ of $x[n]$.
ii) Find the N-point DFT $X[k]$ of the finite length sequence $x[n]$.
c) Determine the lattice coefficients corresponding to the Finite Impulse Response filter with given system function

$$
\begin{equation*}
H(z)=A_{3}(z)=1+\frac{13}{24} z^{-1}+\frac{5}{8} z^{-2}+\frac{1}{3} z^{-3} \tag{8+6+4}
\end{equation*}
$$

6.

a) Explain the basic features and Advantages of TMS320C40 DSP Co-processor.
b) Develop a radix-3 decimation-in-time FFT algorithm for $N=3^{v}$ and draw the corresponding flow graph for $\mathrm{N}=9$. What is the number of required complex multiplications?
c) Using the radix-2 decimation-in-frequency algorithm, compute the 8-point DFT of the sequence, $x(n)=\{0.5,0.5,0.5,0.5,0,0,0,0\}$.
(6+6+6)
7.
a) An IIR digital low-pass filter is required to meet the following specifications:

Passband ripple: $\leq 0.5 \mathrm{~dB}$, Passband edge: 1.2 kHz , Stopband attenuation: $\geq 40 \mathrm{~dB}$
Stopband edge: 2 kHz , Sample rate: 8 kHz
The filter is to be designed by performing a bilinear transformation on an analog system function. To meet the specifications in the digital implementation what should be the order of Buttorworth and Chebychev analog designs.
b) Determine the inverse z-transform of

$$
X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}
$$

Using long division method, if (i) ROC: $|z|>1$ and (ii) $|z|<0.5$.
c) The pole-zero plot shown in given figure:

i) Does it represent an FIR filter?
ii) Is it a linear-phase system?

