NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100
1.
a) Find $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ where $z=\left(\frac{i}{3-i}\right)\left(\frac{1}{2+3 i}\right)$.
b) If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 7\end{array}\right]$, then find a matrix B such that $2 A+3 B=A^{2}$.
c) Find $\lim _{x \rightarrow 0} \frac{\sqrt{2+3 x}-\sqrt{2-5 x}}{4 x}$.
d) If $\mathrm{x}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}-\mathrm{y}}$, then show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
e) Find a curve in the $x y$ - plane that passes through the point $(0,3)$ and whose tangent line at a point (x, y) has slope $\frac{2 x}{y^{2}}$.
f) Show that the series $\left[\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\frac{4}{2^{4}}+\ldots\right]$ is convergent.
g) Show that the vectors $(2,-3,1)$ and $(1,2,4)$ are orthogonal.
2.
a) Find the rank of the matrix $A=\left[\begin{array}{cccc}3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15\end{array}\right]$.
b) Find the eigen values of the matrix $\left[\begin{array}{cc}-5 & 2 \\ 2 & -2\end{array}\right]$.
c) Using Cramer's rule, find the solution to the following system of linear equations:

$$
\begin{aligned}
& 3 x+3 y-z=11 \\
& 2 x-y+2 z=9 \\
& 4 x+3 y+2 z=25 .
\end{aligned}
$$

3.

a) For what values of the constant k the function
$f(x)=\left[\begin{array}{cc}\frac{x^{2}-3 x-2}{x-1}, & x \neq 1 \\ k, & x=1\end{array}\right.$
is continuous at $\mathrm{x}=1$? Explain.
b) Let m and n be positive integers. If $\mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}}=(\mathrm{x}+\mathrm{y})^{\mathrm{m}+\mathrm{n}}$, then prove that $\frac{d y}{d x}=\frac{y}{x}$.
c) Locate (if any) the relative maxima and relative minima of the function $f(x)=3 x^{5 / 3}-15 x^{2 / 3}, x>0$.
4.
a) Verify the hypotheses of the Mean Value Theorem on the interval [3, 4] for the function

$$
f(x)=x+(1 / x)
$$

and find the value of c in $[3,4]$ which satisfies the conclusion of the theorem.
b) Find the slope of the tangent line to the unit circle

$$
x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq 2 \pi\}
$$

at the point where $t=\pi / 6$.
c) Find an equation of the parabola that is symmetric about the y-axis has its vertex at the origin, and passes through the point $(5,2)$.
(6+6+6)
5.
a) Evaluate $\int \frac{\sec ^{2}(\sqrt{x})}{\sqrt{x}} d x$.
b) Find the area of the region enclosed by $x=y^{2}$ and $y=(x-2)$.
c) Solve the differential equations $\frac{d y}{d x}-y=e^{2 x}$.
6.
a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!10^{n}}{3^{n}}$.
b) Consider two lines L_{1} and L_{2} in 3 -dimension whose parametric equations are given as follows:

$$
\begin{aligned}
& L_{1}: x=1+4 t, y=5-4 t, z=-1+5 t \\
& L_{2}: x=2+8 t, y=4-3 t, z=5+t
\end{aligned}
$$

where $t \in \operatorname{IR}$. Are the two lines parallel? Explain.
c) Find the equation of a plane passing through the points (1, 1, 0), (0, 1, 1), (1, 0, 1).
(6+6+6)
7.
a) Evaluate $\int\left(\frac{1}{\log x}-\frac{1}{(\log x)^{2}}\right) d x$.
b) Find a vector \vec{n} which is normal to the vectors $\vec{x}=4 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{y}=8 \hat{i}-3 \hat{j}+\hat{k}$.
c) Find the first four terms of the Maclaurin's series at a=0 for $f(x)=\frac{1}{1-x}$.

