
 

                           SQL & PL/SQL  

 

The objective of the course is to familiarize students with basics of ORACLE DBA (Database 

Architecture). Students will gain a conceptual understanding of the Oracle database architecture and 

how its components work and interact with one another. Students will also learn how to create an 

operational database and properly manage the various structures in an effective and efficient manner 

including performance  monitoring, database security, user management, and backup/recovery 

techniques.  

OUTLINE OF THE COURSE  

  

S. No.   Topic  Minimum 

number of 

Hours  

1  Introduction of Database, DB Design, RDBMS  5  

2  ORACLE Versions, Installation and Architecture  2  

3  SQL  15  

4  Database Transactions and Security  5  

5  PL/SQL  20  

6  Interview FAQs  3  

  

LECTURE: 50 hrs 

PRACTICLE/TUTORIAL:   40 hrs  

PROJECT:   30 hrs  

TOTAL: 120 hrs  

DETAILED SYLLABUS  

1. Introduction of Database, DB Design, RDBMS:          

Definition of Database, Definition of DBMS FMS (File Management Systems), Advantages of 

DBMS over FMS, DB Life Cycle, DB Design (ER Model, Normalization), Data Models, Feature of 

RDBMS, CODD Rules, Client/Server Architecture  

2. ORACLE                   

Oracle Versions, Oracle11g Installation, Oracle Architecture  

3. SQL                                                           

Introduction to SQL, SQL Standards, SQL Sublanguages, About SQL*PLUS, Differentiate 

between SQL AND SQL*PLUS, Data types in ORACLE, Operators in ORACLE, Schemas and 

Schemas object, Table Creation, Inserting Data, Data Retrieval (SELECT Statement, Column 

alias, Table alias, Clauses in SQL), Data Filtering ( WHERE clause, ORDER BY clause), DML 

Commands (INSERT, DELETE, UPDATE, MERGE, INSERT ALL, Copy data from one table to 

another), DDL Commands, Integrity Constraints, Built-in Functions, Data Aggregation, JOIN 

Operations, SET Operators, Sub Queries  

  

  



 

 4. Database Transactions and Security              

Commit Command, Rollback command, Save point command, System privileges and Objects, 

privileges, Granting and revoking privileges, Creating users and roles, Schema Objects, About 

locks and Isolation Levels, About table and partitioning, Hierarchical Queries  

5. PL/SQL                                            

Introduction to PL/SQL, Advantages of PL/SQL, PL/SQL Architecture, Data types in PL/SQL, 

PL/SQL Program Structure, Simple PL/SQL Programs, Embedding SQL statements in 

PL/SQL, Conditional Statements, Loops, Cursors, Exception Handling, Subprograms, Stored 

Procedures, Function and Packages, Triggers, Collections in PL/SQL, Built-in packages in 

PL/SQL, ORACLE 10g features, ORACLE 11g features  

 6. Interview FAQs                    

        

  

  

REFERENCE BOOKS:  
  

1.Oracle 11g: PL/SQL Programming by Joan Casteel  

ONLINE RESOURCES  
www.tutorialspoint.com/plsql/index.htm  

https://docs.oracle.com/cd/B19306_01/server.102/b14357/qstart.htm 

http://www.w3schools.com/sql/default.asp   

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.tutorialspoint.com/plsql/index.htm
http://www.tutorialspoint.com/plsql/index.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14357/qstart.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14357/qstart.htm
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp


 

Assignments   
  

1. Create a query to display all the data from the Employees table.  

2. The following SELECT statement executes successfully (True / False)  

   FROM employees  

   SELECT last_name, first_name  

3. Create a query to display the department number, department name, and manager 

number. Name the last column (manager number) heading as “MNG” (Employees 

table).  

4. The following SELECT statement executes successfully (True / False)  

           

         SELECT department_name, department_name     FROM 
departments  

  

5. Create a query to display the employee number, first name, last name, phone 

number and department number (Employees table).  

6. Create a query to display the first name, last name, hire date, salary, and salary after 

a raise of 20%. Name the last column (salary after a raise) heading as 

“ANNUAL_SAL” (Employeestable)  

7. Create a query to display the last name concatenated with the first name, separated 

by space, and the telephone number concatenated with the email address, separated 

by hyphen. Name the column headings “FULL_NAME” and 

“CONTACT_DETAILS” respectively (Employees tables).  

8. Create a query to display the last name concatenated with job_id column, separated 

by space. Name this column heading as “EMPLOYEE_AND_TITLE” (Employees 

table).  

9. Create a query to display the first name, last name, salary, and hire date 

concatenated with the literal string “HD”, separated by space. Name the column 

headings “FN”, “LN”, “SAL”, and “HD” respectively (Employees table).  

10. Create a query to display the unique salaries in Employees tables.  

11. Create a query to display the unique combination of values in department_id and 

job_idcolumns (Employees table).  

12. Display the first name concatenated with the last name, separated by comma, and 

salary, for all employees whose salary not in the range between 7000 and 15000. 

Sort the query in ascending order by the full name (Employees table).  



 

13. Display the first name concatenated with the last name, separated by comma, the 

phone number concatenated with the email address, separated by hyphen, and 

salary, for all employees whose salary is in the range of 5000 and 10000. Name the 

column headings:  

“FULL_NAME”, “CONTACTS” and “SAL” respectively (Employees table).  

14. Display all data from Employees table for all employees whose:  

salary is in the range of 6000 and 800 and their commission is not null or department 

number is not equal to 80, 90 and 100 and their hire date is before January 1st, 1990.  

15. Display last name, job id and hire date for all employees who was hired during 

December 12th, 1995 and April 17th, 1998.  

16. Display the first name concatenated with last name, hire date, commission 

percentage, telephone, and salary for all employees whose salary is greater than 

10000 or the third digit in their phone number equals 5. Sort the query in a 

descending order by the first name (Employees table).  

17. Display the last name and salary for all employees who earn more than 12000 

(Employees table).  

18. Display the last name and department number for all employees whose department 

number is equal to 50 or 80. Perform this exercise once by using the IN operator, 

once by using the OR operator.  

19. Display the first name and salary for all employees who doesn’t earn any 

commission.  

20. Display the first name, salary, and manager number for all employees whose 

manager number is not null.  

21. Display the first name concatenated with the last name (separated by space), the 

main phone number concatenated with street (separated by space), and monthly 

discount for all customers whose monthly discount is in the range between 11 and 

27. Name the column headings FULL_NAME, CONTACTS, and DC respectively 

(Customers table).  

22. Display all data from Customers table for :  

1. All customers who live in New York and whose monthly discount is in the 

range between 30 and 40 or  

2. All customers whose package number is not 8,19, or 30 and whose join 

date is before January 1st, 2007  

23. Display the last name, package number, and birthdate for all customers whose join 

date is in the range between December 12th, 2007 and April 17th, 2010 (Customers 

table).  



 

24. Display the package number, start date, and speed for all packages whose start date 

is before January 1st, 2007 (Packages table)  

25. Display the package number, speed, and sector number for all packages whose 

sector number equals 1 (Packages table).  

26. Display the package number, speed and sector number for all packages with 

internet speed of “5Mbps” or “10Mbps” (Packages table).  

27. Display the last name and monthly discount for all customers live in Orlando 

(Customers table).  

28. Display the last name and package number for all customers whose package 

number equals 9 or 18. Preform the exercise once using IN operator, once using 

OR (Customers table).  

29. Display the first name, main phone number and secondary phone number for all 

customers without a secondary phone number (secondary phone number is null).  

30. Display the first name, monthly discount and package id for all customers without 

any monthly discount (monthly discount is null).  

31. Average salary per department  

1. Display the department number and average salary for each department.  

2. Modify your query to display the results only for departments 50 or 80.  

32. Numer of employees per job id  

1. Display the job id and the number of employees for each job id.  

2. Modify your query to display the results only for employees whose salary 

is greater the 10000.  

3. Modify your query again, this time display the results only for jobs with 

more than 2 people.  

33. Display the department number, job id, and the average salary for each department 

and job id.  

34. Managers and highest salary  

1. Display the manager number and the highest salary for each manager 

number.  

2. Modify your query to display the results only for employees whose salary 

is greater than 10000.  



 

35. Display the job id and minimum salary for each job id, for all jobs whose minimum 

salary is greater than 7000.  

36. Display the department number, and the average salary for each department, for all 

departments whose number is in the range of 20 and 80, and their average salary is 

greater than 9000.  

37. Package number and average monthly discount (Customers table) –  

1. Display the package number and the average monthly discount for each 

package.  

2. Display the package number and the average monthly discount for each 

package, only for packages whose number equals 22 or 13.  

38. Display the highest, lowest and average monthly payment for each internet speed 

(Packages table).  

39. The number of customer in each internet package (Customers table) –  

1. Display the package number and the number of customers for each 

package number.  

2. Modify the query to display the package number and number of customers 

for each package number, only for the customers whose monthly discount 

is greater than 20.  

3. Modify the query to display the package number and number of customers 

for each package number, only for the packages with more than 100 

customers.  

40. Display the state, city and number of customers for each state and city.  

41. Cities and the average monthly discount (Customers table) –  

1. Display the city and the average monthly discount for each city  

2. Display the city and the average monthly discount for each city, only for 

the customers whose monthly discount is greater than 20  

42. States and the lowest monthly discount (Customers table) –  

1. Display the state and the lowest monthly discount for each state.  

2. Display the state and lowest monthly discount for each state, only for states 

where the lowest monthly discount is greater than 10  

43. Display the internet speed and number of package for each internet speed, only for 

the internet speeds with more than 8 packages.  



 

44. Conditional logic:-Rewrite the following IF statements so that you do not use an 

IF statement to set the value of no_revenue . What is the difference between these 

two statements? How does that difference affect your answer?  

1. IF total_sales <= 0  

2. THEN  

3. no_revenue := TRUE;  

4. ELSE  

5. no_revenue := FALSE; 6. END IF; 7.   

8. IF total_sales <= 0  

9. THEN  

10. no_revenue := TRUE;  

11. ELSIF total_sales > 0  

12. THEN  

13. no_revenue := FALSE;  

 END IF;  

45. Which procedure will never be executed in this IF statement?  

46. IF (order_date > SYSDATE) AND order_total >= min_order_total  

47. THEN  

48. fill_order (order_id, 'HIGH PRIORITY');  

49. ELSIF (order_date < SYSDATE) OR  

50. (order_date = SYSDATE)  

51. THEN  

52. fill_order (order_id, 'LOW PRIORITY');  

53. ELSIF order_date <= SYSDATE AND order_total < min_order_total  

54. THEN  

55. queue_order_for_addtl_parts (order_id);  

56. ELSIF order_total = 0  

57. THEN  

58. disp_message (' No items have been placed in this order!');  

59. END IF;  

60. Loops :- How many times does the following loop execute?  

61. FOR year_index IN REVERSE 12 .. 1  

62. LOOP  

63. calc_sales (year_index);  

END LOOP:  

64. Select the type of loop (FOR, WHILE, simple) appropriate to meet 

each of the following requirements:  

1. Set the status of each company whose company IDs are 

stored in a PL/SQL table to closed.  

2. For each of twenty years in the loan-processing cycle, 

calculate the outstanding loan balance for the specified 

customer. If the customer is a preferred vendor, stop the 

calculations after twelve years.  



 

3. Display the name and address of each employee returned by 

the cursor.  

4. Scan through the list of employees in the PL/SQL table, 

keeping count of all salaries greater than $50,000. Don't even 

start the scan, though, if the table is empty or if today is a 

Saturday or if the first employee in the PL/SQL table is the 

president of the company.  

65. Identify the problems with (or areas for improvement in) the 

following loops. How would you change the loop to improve it?  

1. FOR i IN 1 .. 100  

2. LOOP  

3. calc_totals (i);  

4. IF i > 75  

5. THEN  

6. EXIT;  

7. END IF;  

8. END LOOP;  

9.   

10.  OPEN emp_cur;  

11.  FETCH emp_cur INTO emp_rec;  

12.  WHILE emp_cur%FOUND  

13.  LOOP  

14.     calc_totals (emp_rec.salary);  

15.     FETCH emp_cur INTO emp_rec;  

16.     EXIT WHEN emp_rec.salary > 100000;  

17.  END LOOP;  

18.  CLOSE emp_cur;  

19.  

20.  FOR a_counter IN lo_val .. hi_val  

21.  LOOP  

22.     IF a_counter > lo_val * 2  

23.     THEN  

24.        hi_val := lo_val;  

25.     END IF;  

26.  END LOOP;  

27.  

28.  DECLARE  

29.     CURSOR emp_cur IS SELECT salary FROM emp;  

30.     emp_rec emp_cur%ROWTYPE  

31.  BEGIN  

32.     OPEN emp_cur;  

33.     LOOP  

34.        FETCH emp_cur INTO emp_rec;  

35.        EXIT WHEN emp_cur%NOTFOUND;  

36.        calc_totals (emp_rec.salary);  

37.     END LOOP;  



 
38.     CLOSE emp_cur;  

39.  END;  

40.  

41.  WHILE no_more_data  

42.  LOOP  

43.     read_next_line (text);  

44.     no_more_data := text IS NULL;  

45.     EXIT WHEN no_more_data;  

46.  END LOOP;  

47.  

48.  FOR month_index IN 1 .. 12  

49.  LOOP  

50.     UPDATE monthly_sales   

51.        SET pct_of_sales = 100  

52.      WHERE company_id = 10006  

53.        AND month_number = month_index;  

54.  END LOOP;  

55.  

56.  DECLARE  

57.     CURSOR emp_cur IS SELECT ... ;  

58.  BEGIN  

59.     FOR emp_rec IN emp_cur  

60.     LOOP  

61.        calc_totals (emp_rec.salary);  

62.     END LOOP;  

63.     IF emp_rec.salary < 10000  

64.     THEN  

65.        DBMS_OUTPUT.PUT_LINE ('Give ''em a raise!');  

66.     END IF;  

67.     CLOSE emp_cur;  

68.  END;  

69.  

70. DECLARE  

71. CURSOR checked_out_cur IS   

72. SELECT pet_id, name, checkout_date   

73. FROM occupancy  

74. WHERE checkout_date IS NOT NULL;  

75. BEGIN  

76. FOR checked_out_rec IN checked_out_cur   

77. LOOP  

78. INSERT INTO occupancy_history (pet_id, name, 

checkout_date)  

79. VALUES (checked_out_rec.pet_id,   

80. checked_out_rec.name,   

81. checked_out_rec.checkout_date);  

82.     END LOOP;  

83.  END;  

66. How many times does the following WHILE loop execute?  



 

67. DECLARE  

68. end_of_analysis BOOLEAN := FALSE;  

69. CURSOR analysis_cursor IS SELECT ...;  

70. analysis_rec analysis_cursor%ROWTYPE;  

71. next_analysis_step NUMBER;  

72. PROCEDURE get_next_record (step_out OUT NUMBER) IS  

73. BEGIN  

74. FETCH analysis_cursor INTO analysis_rec;  

75. IF analysis_rec.status = 'FINAL'  

76. THEN  

77. step_out := 1; 78.       ELSE  

79. step_out := 0;  

80. END IF;  

81. END;  

82. BEGIN  

83. OPEN analysis_cursor;  

84. WHILE NOT end_of_analysis  

85. LOOP  

86. get_next_record (next_analysis_step);  

87. IF analysis_cursor%NOTFOUND AND  

88. next_analysis_step IS NULL  

89. THEN  

90. end_of_analysis := TRUE;  

91. ELSE  

92. perform_analysis;  

93. END IF;  

94. END LOOP;  

 END;  

In each of the following PL/SQL blocks, a VALUE_ERROR exception is raised 

(usually by an attempt to place too large a value into a local variable). Identify 

which exception handler (if any -- the exception could also go unhandled) will 

handle the exception by writing down the message that will be displayed by the 

call to PUT_LINE in the exception handler. Explain your choice.  

95. DECLARE  

96. string_of_5_chars VARCHAR2(5);  

97. BEGIN  

98. string_of_5_chars := 'Steven';  

99. END;  

 100.    

101. DECLARE  

102. string_of_5_chars VARCHAR2(5);  

103. BEGIN  

104. BEGIN  

105. string_of_5_chars := 'Steven';  



 

106. EXCEPTION  

107. WHEN VALUE_ERROR  

108. THEN  

109. DBMS_OUTPUT.PUT_LINE ('Inner block');  

110. END;  

111. EXCEPTION  

112. WHEN VALUE_ERROR  

113. THEN  

114. DBMS_OUTPUT.PUT_LINE ('Outer block'); 115. END;  

 116.    

117. DECLARE  

118. string_of_5_chars VARCHAR2(5) := 'Eli';  

119. BEGIN  

120. BEGIN  

121. string_of_5_chars := 'Steven';  

122. EXCEPTION  

123. WHEN VALUE_ERROR  

124. THEN  

125. DBMS_OUTPUT.PUT_LINE ('Inner block');  

126. END;  

127. EXCEPTION  

128. WHEN VALUE_ERROR  

129. THEN DBMS_OUTPUT.PUT_LINE ('Outer block'); 130. END;  

 131.    

132. DECLARE  

133. string_of_5_chars VARCHAR2(5) := 'Eli'; 134. BEGIN  

135. DECLARE  

136. string_of_3_chars VARCHAR2(3) := 'Chris';  

137. BEGIN  

138. string_of_5_chars := 'Veva';  

139. EXCEPTION  

140. WHEN VALUE_ERROR  

141. THEN DBMS_OUTPUT.PUT_LINE ('Inner block');  

142. END;  

143. EXCEPTION  

144. WHEN VALUE_ERROR  

145. THEN DBMS_OUTPUT.PUT_LINE ('Outer block'); 146. END;  

 147.    

148. DECLARE  

149. string_of_5_chars VARCHAR2(5);  

150. BEGIN  

151. BEGIN  

152. string_of_5_chars := 'Steven';  

153. EXCEPTION  



 

154. WHEN VALUE_ERROR  

155. THEN  

156. RAISE NO_DATA_FOUND;  

157. WHEN NO_DATA_FOUND  

158. THEN  

159. DBMS_OUTPUT.PUT_LINE ('Inner block');  

160. END;  

161. EXCEPTION  

162. WHEN NO_DATA_FOUND  

163. THEN  

164. DBMS_OUTPUT.PUT_LINE ('Outer block');  

165. END;  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Major Assignment - Oracle Database Creation  



 

Overview  

In this assignment you will build a sample database. You will create the tables in Oracle, add sample data and 

create several queries and a report.    

Activities  

Step 1.  

Using Oracle, create the tables identified below in the following order:   

DATABASE TABLES:  

Campus (CampusID, CampusName, Street, City, State, Zip, Phone, CampusDiscount)  

  

Position (PositionID, Position, YearlyMembershipFee)  

  
Members (MemberID, LastName, FirstName, CampusAddress, CampusPhone,  
CampusID, PositionID, ContractDuration)  
      FK   CampusID --> Campus(CampusID)  

             PositionID --> Position(PositionID)  

  

Prices (FoodItemTypeID, MealType, MealPrice)  

  

FoodItems (FoodItemID, FoodItemName, FoodItemTypeID)  

     FK    FoodItemTypeID --> Prices(FoodItemTypeID)  

  

Orders (OrderID, MemberID, OrderDate)  
     FK   MemberID --> Members(MemberID)  

  

OrderLine (OrderID, FoodItemsID, Quantity)  
     FK   OrderID --> Orders(OrderID)  
           FoodItemsID --> FoodItems(FoodItemID) STRUCTURE NOTES:  

• Use the proper naming convention for your constraints:  
Example: Constraint TableName_FieldName_ConstraintID  

(Campus_CampusID_PK)    
• Set up the Primary Keys for each table with Constraints listed.  Note: The OrderLine Table has a 

composite Primary Key   
• Add Your Foreign Keys for each table with your Constraints listed.   

• Set up your Sequence for the Prices table ONLY. Remember to follow the proper naming convention.  

The Sequence will be used in the insert commands to add your auto numbering into the Primary Key 

(FoodItemTypeID) fields.  Name the Sequence "Prices_FoodItemID_Seq"   
• Make the Data Types for all the Primary Keys and their corresponding Foreign Keys Varchar2(5).   

• Make the Data Type for OrderDate Varchar2(25). (we won't worry about the date format, way too 

complicated for what we are doing).   

• Make the Data Types for the MealPrice and YearlyMembershipFee Decimal, 7 digits maximum with 2 

digits to the right of the decimal place, so that we can perform calculations on them.   

• Make the Data Types for ContractDuration, and Quantity Integer with 3 digits maximum for 

calculation purposes.   
• Make the Data Type for CampusDiscount Decimal, 2 digits maximum with 2 digits to the right of the 

decimal place.   

   

Step 2.    



 
Use the Insert Into Command to add your data to each table. Add data to your primary tables first and then to 

your secondary tables. Also, remember to use the sequence code with your insert statement to add the auto 

number value to each primary key field.  

DATA TO BE INSERTED:  

Campus:  
'1','IUPUI','425 University Blvd.','Indianapolis', 'IN','46202', '317-274-4591',.08  

'2','Indiana University','107 S. Indiana Ave.','Bloomington', 'IN','47405', '812-8554848',.07  
'3','Purdue University','475 Stadium Mall Drive','West Lafayette', 'IN','47907', '765-4941776',.06  

   

Position:  
'1','Lecturer', 1050.50  
'2','Associate Professor', 900.50  

'3','Assistant Professor', 875.50  
'4','Professor', 700.75  

'5','Full Professor', 500.50  
   

Members:  
'1','Ellen','Monk','009 Purnell', '812-123-1234', '2', '5', 12  
'2','Joe','Brady','008 Statford Hall', '765-234-2345', '3', '2', 10  

'3','Dave','Davidson','007 Purnell', '812-345-3456', '2', '3', 10  
'4','Sebastian','Cole','210 Rutherford Hall', '765-234-2345', '3', '5', 10  

'5','Michael','Doo','66C Peobody', '812-548-8956', '2', '1', 10  
'6','Jerome','Clark','SL 220', '317-274-9766', '1', '1', 12  

'7','Bob','House','ET 329', '317-278-9098', '1', '4', 10  
'8','Bridget','Stanley','SI 234', '317-274-5678', '1', '1', 12  
'9','Bradley','Wilson','334 Statford Hall', '765-258-2567', '3', '2', 10  

Prices:  Note - Remember that these Primary Key Values should be entered using the  

Sequence (autonumber)  
'1','Beer/Wine', 5.50  

'2','Dessert', 2.75  
'3','Dinner', 15.50   

'4','Soft Drink', 2.50  '5','Lunch', 7.25  

FoodItems:  
'10001','Lager', '1'  
'10002','Red Wine', '1'  

'10003','White Wine', '1'  
'10004','Coke', '4'  
'10005','Coffee', '4'  

'10006','Chicken a la King', '3'  
'10007','Rib Steak', '3'  

'10008','Fish and Chips', '3'  
'10009','Veggie Delight', '3'  

'10010','Chocolate Mousse', '2'  
'10011','Carrot Cake', '2'  
'10012','Fruit Cup', '2'  

'10013','Fish and Chips', '5'  
'10014','Angus Beef Burger', '5'  

'10015','Cobb Salad', '5'  

   



 
Orders:  
'1', '9', 'March 5, 2005'  
'2', '8', 'March 5, 2005'  

'3', '7', 'March 5, 2005'  
'4', '6', 'March 7, 2005'  

'5', '5', 'March 7, 2005'  
'6', '4', 'March 10, 2005'  
'7', '3', 'March 11, 2005'  

'8', '2', 'March 12, 2005'  
'9', '1', 'March 13, 2005'  

   

OrderLine:  
'1','10001',1  
'1','10006',1  

'1','10012',1  
'2','10004',2  

'2','10013',1  
'2','10014',1  

'3','10005',1  
'3','10011',1  
'4','10005',2  

'4','10004',2  
'4','10006',1  

'4','10007',1  
'4','10010',2  

'5','10003',1  
'6','10002',2  
'7','10005',2  

'8','10005',1  
'8','10011',1  

'9','10001',1  

   

Step 3.    

Create the queries listed below:   

NOTE: Before you begin to run Queries 1 - 8, Enter the following two commands at the SQL Prompt:  

Set Linesize 110 Set 

Pagesize 90  

This will allow you to see most, if not all, of your data without it wrapping.  

1. Select all records from each table   

2. List all of your constraints in the database   

3. List all of your table names in the database   

4. List your sequence name in the database select sequence_name  from user_sequences;   

5. List the Columns and Datatypes of each table   

6. Create a listing of all Faculty Members (First and Last), their Faculty Position and the University that 

they are affiliated with (Name), along with their Monthly_Dues (Calculated Field with a column 

alias). Sort the records in descending order by University and then by Faculty's last name in ascending 

order.   

7. Create a listing that shows the various food items that the faculty club serves (Name of the food item, 

type of food item and the price of the food item). Note: List no alcoholic beverages. Sort the records in 

ascending order by price.   



 

8. List the OrderID, Order Date, Faculty Member's Name, Campus Name, each FoodItem that makes up 

a given order, the type of meal, cost of the meal, quantity ordered and the total line total (calculated 

field and column alias). Sort by Order IDs in descending order.   

   

Step 4.    

Create 1 formatted Report following the examples given in the SQL Book. The report should be similar to the 

following in format:   

View Requirements:  

• You will have to create a view that contains your report data. View Name: IFC_Report   

• Sort your data in ascending order by the OrderID within your view.   
• This view is similar in structure to Query 8 in Step 3.   

• The grouping information within the report that does not repeat contains 5 fields concatenated 

together.  
Include Fields: OrderID, OrderDate, FirstName, LastName and CampusName)   

• The last field of the report (Totals) is a calculated field. This field takes into consideration the 

following:  
Line Item total with the Campus Discount and tax of 6% figured in.   

Report Requirements:  

• Make sure that you list the report title and headings as listed on the report.   

• Make sure that you set your formatting for each column in your report.  
Remember that there are different formats for Character and Number Datatypes.   

• Sums (totals) are calculated for each order grouping (info that does not repeat) and for the entire 

report.   
• Remember that the linesize, pagesize, amount of characters that you allot to each field's format and the 

number of lines that you skip for your grouping will all affect your report's outputted display.   

In the final text file that you will submit, name your queries Query 1 through Query 8, matching the criteria 

above. NOTE: Query 1 would be labeled Query1a, Query1b, Query1c depending on the number of tables that 

you have in your database.  

  

  

  

  

  


