
Evaluating and Reducing the Exposure to Type 1 cross-site

scripting (XSS) attacks using secure development practices

 Syed Nisar Hussain Bukhari
1
 (Scientist-B), Ashaq Hussain Dar

2
 (Scientist-C)

National Institute of Electronics and Information Technology, J & K,

Department of Electronics and IT, Ministry of communication and Information Technology, Govt. of India

E-mail: nisar.bukhari@gmail.com
1
, ashaqhussain@yahoo.com

2

Abstract

As the use of the Internet has grown, so has

the number of attacks which attempt to use it

for nefarious purposes. One vulnerability

which has become commonly exploited is

known as cross-site scripting (XSS). An

attack on this class of vulnerabilities occurs

when an attacker injects malicious code into

a web application in an attempt to gain

access to unauthorized information. In such

instances, the victim is unaware that their

information is being transferred from a site

that he/she trusts to another site controlled

by the attacker. In this paper we shall focus

on type 1 or “non-persistent cross-site

scripting”. With non-persistent cross-site

scripting, malicious code or script is

embedded in a Web request, and then

partially or entirely echoed (or “reflected”)

by the Web server without encoding or

validation in the Web response. The

malicious code or script is then executed in

the client’s Web browser which could lead

to several negative outcomes, such as the

theft of session data and accessing sensitive

data within cookies. In order for this type of

cross-site scripting to be successful, a

malicious user must coerce a user into

clicking a link that triggers the non-

persistent cross-site scripting attack. This is

usually done through an email that

encourages the user to click on a provided

malicious link, or to visit a web site that is

fraught with malicious links. In this paper

type 1 or “non-persistent cross-site

scripting” attack shall be evaluated. We will

also show how these attacks can be reduced

using secure development practices.

Keywords: cross-site scripting, XSS, non-

persistent, attack.

1. Introduction

JavaScript is a powerful tool for developing

rich Web applications. Without client-side

execution of code embedded in HTML and

XHTML pages, the dynamic nature of Web

applications like Google Maps, Try Ruby!

and Zoho Office and so would not be

possible. Unfortunately, any time you add

complexity to a system, you increase the

potential for security issues -- and adding

JavaScript to a Web page is no exception.

Among the problems introduced by

JavaScript are:

1. A malicious website might employ

JavaScript to make changes to the

local system, such as copying or

deleting files.

2. A malicious website might employ

JavaScript to monitor activity on the

mailto:nisar.bukhari@gmail.com
http://maps.google.com/
http://tryruby.hobix.com/
http://www.zoho.com/

local system, such as with keystroke

logging.

3. A malicious website might employ

JavaScript to interact with other

Websites the user has open in other

browser windows or tabs.

The first and second problems in the above

list can be mitigated by turning the browser

into a sort of "sandbox" that limits the way

JavaScript is allowed to behave so that it

only works within the browser's little world.

The third can be limited somewhat as well,

but it is all too easy to get around that

limitation because whether a particular

webpage can interact with another webpage

in a given manner may not be something

that can be controlled by the software

employed by the end user. Sometimes, the

ability of one website's JavaScript to steal

data meant for another Website can only be

limited by the due diligence of the other

website's developers.

The key to defining cross-site scripting is in

the fact that vulnerabilities in a given

website's use of dynamic Web design

elements may give someone the opportunity

to use JavaScript for security compromises.

It's called "cross-site" because it involves

interactions between two separate websites

to achieve its goals. In many cases, however,

even though the exploit involves the use of

JavaScript, the website that's vulnerable to

cross-site scripting exploits does not have to

employ JavaScript itself at all. Only in the

case of local cross-site scripting exploits

does the vulnerability have to exist in

JavaScript sent to the browser by a

legitimate website. [1]

2. Type 1 or Non persistent XSS

attack scenario

In a reflected/type 1 XSS attack, the

malicious string is part of the victim's

request to the website. The website then

includes this malicious string in the response

sent back to the user. The diagram below

illustrates this scenario:

1. The attacker crafts a URL containing

a malicious string and sends it to the

victim.

2. The victim is tricked by the attacker

into requesting the URL from the

website.

3. The website includes the malicious

string from the URL in the response.

4. The victim's browser executes the

malicious script inside the response,

sending the victim's cookies to the

attacker's server.

3. Reflected XSS attack seems

harmless-But it isn’t!!

At first, reflected XSS might seem harmless

because it requires the victim himself to

actually send a request containing a

malicious string. Since nobody would

willingly attack himself, there seems to be

no way of actually performing the attack. As

it turns out, there are at least two common

ways of causing a victim to launch a

reflected XSS attack against himself:

 Attack occurs when an attacker takes

advantage of such applications and

creates a request with malicious data

(such as a script) that is later

presented to the user requesting it.

The malicious content is usually

embedded into a hyperlink,

positioned so that the user will come

across it in a web site, a Web

message board, an email, or an

instant message.[5]

 If the user targets a large group of

people, the attacker can publish a

link to the malicious URL (on his

own website or on a social network,

for example) and wait for visitors to

click it.

These two methods are similar, and both can

be more successful with the use of a URL

shortening, which masks the malicious

string from users who might otherwise

identify it.[2]

4. Statistics showing the frequency of

Type 1 XSS attack

Sites continue to fall prey to XSS attacks

because most need to be interactive,

accepting and returning data from users [3].

As per the report by Search Security

organization team the penetration testing

work conducted at Intelguardians,

approximately 80% of the Web applications

they tested have XSS flaws [6]. It has been

around since the 1990s and most major

websites like Google, Yahoo and Facebook

have all been affected by cross-site scripting

flaws at some point. According to a latest

WhiteHat Security Statistics Report 86% of

all websites had at least one serious

vulnerability but cross-site scripting is the

most frequently found serious vulnerability.

Of the total population of the vulnerabilities

identified, Cross-Site Scripting, Information

Leakage and Content Spoofing took the top

three spots at 43%, 11% and 13%

respectively. This is near linear repeat of

2011 where the percentage was 50%, 14%

and 9% [4]

 Fig 2: Overall vulnerability population (2012).%age

breakdown of all serious vulnerabilities discovered

http://searchsecurity.techtarget.com/resources/Web-Application-Security
http://www.whitehatsec.com/home/assets/presentations/PPTstats032608.pdf
http://www.whitehatsec.com/home/assets/presentations/PPTstats032608.pdf

Fig 3: Top 15 vulnerability classes (2012) -sorted by

vulnerability class.

5. Research Findings

Most of the web developers particularly

those having less experience or no

experience at all write in secure code. I

reviewed as part of my work the source code

of around ten web applications and I found

that developers are not aware that their

applications are open to simple script

injection attacks. Whether the purpose of

these attacks is to deface the site by

displaying HTML, or to potentially execute

client script to redirect the user to a hacker’s

site, script injection attacks are a problem

that Web developers must contend with.

Script injection attacks are a concern of all

web developers, whether they are using

ASP.NET, ASP, or other web development

technologies. The great thing about the

ASP.NET web technology is that request

validation feature proactively prevents these

attacks by not allowing unencoded HTML

content to be processed by the server unless

the developer decides to allow that content.

 I asked the developers for testing and

I have found that if they enter something

which includes html tags or like tokens as

<h1> hello</h1> in an input field such as

text box, they get the

HttpRequestValidationException because of

the ValidateRequest option which is a part

of the built-in protection mechanism with

ASP.NET. This feature can be enabled on a

per-page basis, or globally through

web.config file settings. This option, when

set to “true,” instructs ASP.NET to inspect

all inputs into a Web-based application for

potentially dangerous inputs. If any

potentially dangerous inputs are detected,

then HttpRequestValidationException is

thrown and the attack is halted. This may be

an attempt to compromise the security of

your application, such as a cross-site

scripting attack. I have experienced that

based on the message received after such an

attempt they immediately override

application request validation settings by

setting the requestValidationMode attribute

in the httpRuntime configuration section to

requestValidationMode="2.0".After setting

this value, disabling request validation by

setting validateRequest="false" in the Page

directive or in the <pages> configuration

section the request is easily processed which

is security threat. So to mention here, it is

strongly recommended that your application

explicitly check all inputs in this case.

Caution: when request validation is

disabled, content can be submitted to your

application; it is the responsibility of the

application developer to ensure that content

is properly encoded or processed. So to

reduce the risk from cross-site scripting

attacks, developers need to transform or

neutralize user input that may contain

potentially executable code or script into

non-executable forms. That is, the Web

browser needs to be told in some way that

the following data is not executable code

and should treated as data only. The way

this transformation or neutralization is

achieved is through encoding. Encoding will

automatically replace any ‘<’ or ‘>’

(together with several other symbols) with

their corresponding HTML encoded

representation. For example, ‘<’ is replaced

by ‘<’ and ‘>’ is replaced by ‘>’

Browsers use these special codes to display

the ‘<’ or ‘>’ in the browser. Out of ten

applications I found only two applications

using encoding as Server.HtmlEncode API

and writing secure code which clearly states

that around 80% of web applications do

have XSS and other types of vulnerabilities.

This closely matches with the report

prepared by Search Security organization

team and WhiteHat Security.

6. Reducing the Exposure using

secure development practices

 There are several measures you can take as

a developer to reduce the exposure to cross-

site scripting attacks conducted through your

Web-based applications.

 The first defensive measure which

can be applied to address a majority

of application security vulnerabilities

is input validation. Ensure that all

untrusted inputs into Web-based

applications conform to the expected

input formats.

 Check for correctness with format,

length, type, and range. Example

sources of untrusted input include,

but are not limited to, data from

users, data from a database, or data

from an un-trusted Web service.

 Encode any Web response data that

may contain user input or other

untrusted input

 Web-based applications built using

Microsoft ASP.NET can leverage

built-in protection via the

ValidateRequest option.

 Another defensive measure that can

be used to help protect applications

from cross-site scripting attacks is

the Microsoft Anti-Cross Site

Scripting Library (AntiXSS). This

library provides additional encoding

capabilities not provided by the

standard encoding libraries included

in the .NET Framework [7].

 The .NET Framework has built-in

encoding libraries under the class

System.Web.HttpUtility. The

encoding methods in this class work

by looking for specific characters

that are common in cross-site

scripting attacks and encode them

into non-executable forms [7].

 The Microsoft Anti-Cross Site

Scripting Library takes a different

approach by first defining a set of

valid characters, and then encoding

any characters not in that valid set.

Both are effective in reducing

exposure to a majority of cross-site

scripting attacks; however, they

differ in the method in which they

reduce exposure.

7. Conclusion

Cross-site scripting vulnerabilities are the

most frequently encountered Web-based

vulnerabilities today, and have been found

on several major Web sites. These

vulnerabilities manifest in Web-based

applications whenever best practices, such

as input validation, and Web output

encoding are not implemented in code. To

reduce exposure to these attacks, developers

should implement a multi-layer defense

strategy that includes coding best practices

such as input validation, Web output

encoding, and leveraging built-in platform

protection. Microsoft has better enabled

developers to do so through the guidance,

process and tools of the Microsoft SDL.

References

[1] www.techrepublic.com

[2] http://excess-xss.com/

[3] http://www.computerweekly.com

[4] White Hat Security, “Website statistics
report”

[5] Cross-site scripting attack prevention,
www.imperva.com

[6] What new tactics can prevent XSS attacks,
www.searchsecurity.techtarget.com

[7] Microsoft SDL-Developer starter Kit,
(Cross site scripting level-200),
www.microsoft.com/sdl

