

Study and Evaluation of caching mechanisms in web applications

 Syed Nisar Hussain Bukhari
1
 (Scientist-B), Ashaq Hussain Dar

2
 (Scientist-C)

National Institute of Electronics and Information Technology, J & K,

Department of Electronics and IT, Ministry of communication and Information Technology, Govt. of India

E-mail: nisar.bukhari@gmail.com
1
, ashaqhussain@yahoo.com

2

Abstract

Memory is the area in web application

development where the most abuse occurs

and where the most benefit may be gained.To

lower the memory footprint and speed up the

application, effective caching strategy is the

solution-an optimization technique which

improves the performance and responsiveness

of an application because it keeps items that

have been recently used in memory,

anticipating that they will be needed again.

But it is a double-edge razor in a sense that if

using carefully and with comprehension will

make life easier. Playing with it without

knowing what you do may ruin your

application. In this paper caching

architecture of a web application will be

presented. The caching strategies in web

application like spatial and temporal will be

evaluated. These strategies shall be evaluated

on a data base driven web application and the

performance results of the application against

the caching techniques shall be presented.

Keywords: Memory, spatial, caching, temporal,

performance.

1. Introduction

Resource sharing and allocation is a major

challenge in designing distributed web

architecture. Consider a web-based database-

driven business application. The web server and

the database server are hammered with client

requests [1]. Most every data model contains a

fair amount of static data, usually implemented

in the form of lookup tables. Since this

information is static, there s no reason to

continually access the database each time this

information needs to be displayed [2]. Any

frequently consumed resource can be cached to

augment the application performance. For

example, caching a database connection, an

external configuration file, workflow data, user

preferences, or frequently accessed web pages

improve the application performance and

availability [1]. However, incorrect caching

choices and poor caching design can degrade

performance and responsiveness. So first decide

when to load data into the cache. Load cache if

one of the following situations arises:

 You must repeatedly access static data or

data that rarely changes.

 Data access is expensive in terms of

creation, access, or transportation.

 Data must always be available, even

when the source, such as a server, is not

available

The underlying caching data structure, cache

eviction strategy, and cache utilization policy

decide the performance of a caching system.

Typically, a hash table with unique hash keys is

used to store the cached data. For example the

.NET framework cache implementation is based

on the Dictionary data structure. The cache

eviction policy is implemented in terms of a

replacement algorithm.

Utilizing different strategies such as temporal,

spatial, primed, and demand caching can create

an effective caching solution.

mailto:nisar.bukhari@gmail.com

2. Architecture of a simple web based

application using caching

A cache is made up of a pool of entries. Each

entry has data along with a tag, which specifies

the identity of the data in the backing store of

which the entry is a copy. When the cache client

(a CPU, web browser, operating system) needs

to access the data presumed to exist in the

backing store, it first checks the cache. If an

entry can be found with a tag matching that of

the desired data, the data in the entry is used

instead. This situation is known as a cache hit.

CPUs and hard drives frequently use a cache, as

do web browsers and web servers.

Figure 1: The Caching Layer (CL) is Another Layer

Figure 2: The caching layer’s methods returns data in the main

architecture from the cache if it is available.

3. Caching Strategies

Defining frequently accessed data is a matter of

judgment and engineering. We have to answer

two fundamental questions in order to define a

solid caching strategy. What resource should be

stored in the cache? How long should the

resource be stored in the cache? The locality

principle provides good guidance on this front,

defining temporal and spatial locality. Temporal

locality is based on repeatedly referenced

resources. Spatial locality states that the data

adjacent to recently referenced data will be

requested in the near future [1].

3.1 Temporal Cache

Temporal locality is well suited for frequently

accessed, relatively nonvolatile data; for

example, a drop-down list on a web page. The

data for the drop down list can be stored in the

cache at the start of the application on the web

server. For subsequent web page requests, the

drop down list will be populated from the web

server cache and not from the database. This will

save unnecessary database calls and will

improve application performance. Figure 3

illustrates a flow chart for this logic

 Figure 3: Temporal locality flowchart -source [1]

Below is the sample C# code to populate the

temporal cache.[1]

3.2 Spatial Cache

Consider an example of tabular data display like

a Grid View or an on-screen report.

Implementing efficient paging on such controls

requires complex logic. The logic is based on the

number of records displayed per page and the

total number of matching records in the

underlying database table. We can either

perform in-memory paging or hit the database

every time the user moves to a different page –

both are extreme scenarios. A third solution is to

exploit the principle of spatial locality to

implement an efficient paging solution. For

example, consider a Grid View displaying 10

records per page. For 93 records, we will have

10 pages. Rather than fetching all records in the

memory, we can use the spatial cache to

optimize this process.

A Sliding window algorithm can be used to

implement the paging. Let’s define the data

window just wide enough to cover most of the

user requests, say 30 records. On page one, we

will fetch and cache the first 30 records. This

cache entry can be user session specific or

applicable across the application. As a user

browses to the third page, the cache will be

updated by replacing records in the range of 1-

10 by 31-40.

In reality, most users won’t browse beyond the

first few pages. The cache will be discarded after

five minutes of inactivity, eliminating the

possibility of a memory leak. The logic is based

on the spatial dependencies in the underlying

dataset. This caching strategy works like a

charm on a rarely changing static dataset.

 Figure 4 illustrates the spatial

cache logic used in the Grid View example. The

drawback of this logic is the possibility of a stale

cache. A stale cache is a result of the application

modifying the underlying dataset without

refreshing the associated cache, producing

inconsistent results. Many caching frameworks

provides some sort of cache synchronization

mechanism to mitigate this problem. In .NET,

the SqlCacheDependency class in the

System.Web.Caching API can be used to

monitor a specific table. SqlCacheDependency

refreshes the associated cache when the

underlying dataset is updated. [1]

Figure 4: spatial cache sequence diagram-source [1]

One good approach to implement the above

scenario is to use stored procedures. SQL script

below shows a sample stored procedure that

pages through the Orders table in the Northwind

database. In a nutshell, all we're doing here is

passing in the page index and the page size. The

appropriate resultset is calculated and then

returned.

The total number of records returned can vary

depending on the query being executed. For

example, a WHERE clause can be used to

constrain the data returned. The total number of

records to be returned must be known in order to

calculate the total pages to be displayed in the

paging UI. For example, if there are 1,000,000

total records and a WHERE clause is used that

filters this to 1,000 records, the paging logic

needs to be aware of the total number of records

to properly render the paging UI [6].

4. Cache Replacement Algorithms

A second important factor in determining an

effective caching strategy is the lifetime of the

cached resource. Usually, resources stored in the

temporal cache are good for the life of an

application. Resources stored in the spatial cache

are time-or place-dependent. Time-dependent

resources should be purged as per the cache

expiration policy. Place-specific resources can

be discarded based on the state of the

application. In order to store a new resource in

the cache, an existing cached resource will be

moved out of the cache to a secondary storage,

such as the hard disk. This process is known as

paging. Replacement algorithms such as least

frequently used resource (LFU), least recently

used resource (LRU), and most recently used

resource (MRU) can be applied in implementing

an effective cache-eviction strategy, which

influences the cache predictability. The goal in

implementing any replacement algorithm is to

minimize paging and maximize the cache hit

rate. In most cases, LRU implementation is a

good enough solution. ASP. NET caching is

based on the LRU algorithm. In more complex

scenarios, a combination of LRU and LFU

algorithms such as the adaptive replacement

cache (ARC) can be implemented. The idea in

ARC is to replace the least frequently and least

recently used cached data. This is achieved by

maintaining two additional scoring lists. These

lists will store the information regarding the

frequency and timestamp of the cached

resource.ARC outperforms LRU by dynamically

responding to the changing access pattern and

continually balancing workload and frequency

features. Some applications implement a cost

based eviction policy. For example, in SQL

Server 2005, zero cost plans are removed from

the cache and the cost of all other cached plans

is reduced by half. The cost in SQL Server is

calculated based on the memory pressure. A

study of replacement algorithms suggests that a

good algorithm should strike a balance between

the simplicity of randomness and the complexity

inherent in cumulative information.

Replacement algorithms play an important role

in defining the cache-eviction policy, which

directly affects the cache hit-rate and the

application performance. [1]

5. Results

Use caching of data for a small period of time

and avoid caching for the whole application

lifecycle. Try to cache the data that is likely to

not be changed very often (e.g., dictionary

elements). Data retrieving from a repository can

be quite a “heavy” task from a performance

point of view, especially when the data

repository is located far from the application

server (e.g., web service call, RPC call,

Remoting etc.) or some specific data is accessed

very often. So, in order to reduce the workload

and time for data retrieving, you can use a

caching functionality.[3] Your data access layer

gets a whole lot of code that deals with caching

objects and collection, updating cache when

objects change or get deleted, expire collections

when a contained object changes or gets deleted

and so on. The more code you write, the more

maintenance overhead you add. [4] Besides the

obvious goals, data caching has some pitfalls (all

of them are about potential situations when

cached data can expire and application uses

inconsistent data):

 If the application is going to be scaled to

a distributed environment (web farm,

application cluster), then every machine

will have its own copy of cached data.

So, one of the machines can modify the

data at any time.

 Several applications can access the same

data repository.[3]

 Entries in the cache might be removed

for reasons other than that they've

expired. For example, the web server

might temporarily run low on memory,

and one way it can reclaim memory is by

throwing entries out of the cache [5]

Results of temporal and spatial cache

mechanisms on a test web application: The

tests were conducted on a SQL Server 2008

driven web application in asp.net and results

were noted on three scenarios below:

a) One of the application I tested without

caching can only serve about 14

request/sec with 10 concurrent users on

a dual core 64 bit PC. The average page

response time noted was 1.21 sec.

b) One of the page named

TemporalDemo.aspx was rendering some

news items and a grid view with 120

records. After implementing cache on

this page in a temporal way, it became

significantly faster, around 26

requests/sec.Page load time decreased

significantly as well to 0.35 sec only.

During the load test, CPU utilization was

around 50%.

c) Another page named SpatialDemo.aspx

was rendering the same news items as

on TemporalDemo.aspx and a grid view

.But this time at the time of page load

only 10 records were fetched from the

database (temporal cache)instead of 120

in one go at the time of load as in case

scenario a above . It became even more

faster, around 39 requests/sec. Page load

time decreased significantly as well to

0.28 sec only. During the load test, CPU

utilization was around 35%.

Table 1: Results showing different parameter values using

spatial and temporal caching strategy

It shows clearly the significant difference it can

make to your application based on the caching

policy used (temporal or spatial).

6. Conclusion

In terms of advantage, Cache concept can make

or break the performance of your computer

system. Smart buffer algorithm will make the

site loading faster than traditional approach.

Cache takes the heavy load / execution from the

server for the repeated operations. By doing so,

Servers can be efficiently used. Caching can

provide huge performance benefits to

applications, and should therefore be considered

when an application is being designed as well as

when it is being performance tested. Choosing a

caching strategy is important. The locality

principle provides good guidance on this front,

defining temporal and spatial locality. Temporal

locality is based on repeatedly referenced

resources. Spatial locality states that the data

adjacent to recently referenced data will be

requested in the near future. Spatial strategy can

have an added advantage over temporal but it

again depends upon the requirement.

References:
[1] Abhijit Gadkari, Caching in the Distributed
Environment, The Architecture Journal-
Microsoft

[2] Scott Mitchell , Caching Data at Application
Startup,http://www.asp.net/webforms/tutorials/d
ata-access/caching-data/caching-data-at-
application-startup-cs

[3] Code project, http://www.codeproject.com/

[4] Simple Way to Cache Objects and
Collections for Greater Performance and
Scalability,http://www.codeproject.com/Articles
/43434/A-Simple-Way-to-Cache-Objects-and-
Collections-for

[5] Caching data for better
performance,http://www.asp.net/web-
pages/tutorials/performance-and-traffic/15-
caching-to-improve-the-performance-of-your-
website

[6] Microsoft MSDN, http://msdn.microsoft.com
/en-us/magazine/cc163854.aspx#S3

http://www.asp.net/web-forms/tutorials/data-access/caching-data/caching-data-at-application-startup-cs#author-info

