
Page 1 of 4

NIELIT GORAKHPUR

Course Name: O Level (2nd Sem B1,
Topic: File Handling (Continued..)

File Handling
 A collection of data or information that are stored on a computer known
 A file is a collection of bytes stored on a secondary storage device.
 There are four different types of file
 Data Files
 Text Files
 Program Files
 Directory Files

 Different types of file store different types of information
 A file has a beginning and an end.
 We need a marker to mark the current position of the file from the beginning (in terms of bytes)

while reading and write operation, takes place on a file.
 Initially the marker is at the beginning of the file. We can move the marker t

the file.
 The new current position can be specified as an offset from the beginning the file.

What is File Stream?
 A stream refers to the flow of data (in bytes) from one place to another (from program to file or vice

versa).
 There are two types of streams

 Text Stream
 It consists of sequence of characters
 Each line of characters in the stream may be terminated by a newline character.
 Text streams are used for textual data, which has a consistent appearance from one

environment to another or from one machine to another
 Binary Stream

 It is a series of bytes.
 Binary streams are primarily used for non

contents of the file.

Types of File
 ASCII Text files

 A text file can be a stream of ch
 It is processed only in forward direction.
 It is opened for one kind of operation (reading, writing, or appending) at any
 We can read only one character at a time from a text file.

 Binary File

 A binary file is a file consisting of collection of bytes.
 A binary file is also referred to as a character stream.

NIELIT GORAKHPUR

B1, B2 and B3 Batch)

A collection of data or information that are stored on a computer known as file
A file is a collection of bytes stored on a secondary storage device.
There are four different types of file

Different types of file store different types of information
beginning and an end.

We need a marker to mark the current position of the file from the beginning (in terms of bytes)
while reading and write operation, takes place on a file.
Initially the marker is at the beginning of the file. We can move the marker t

The new current position can be specified as an offset from the beginning the file.

A stream refers to the flow of data (in bytes) from one place to another (from program to file or vice

e are two types of streams

It consists of sequence of characters
Each line of characters in the stream may be terminated by a newline character.
Text streams are used for textual data, which has a consistent appearance from one

to another or from one machine to another

It is a series of bytes.
Binary streams are primarily used for non-textual data, which is required to keep exact

A text file can be a stream of characters that a computer can process sequentially.
It is processed only in forward direction.
It is opened for one kind of operation (reading, writing, or appending) at any
We can read only one character at a time from a text file.

A binary file is a file consisting of collection of bytes.
A binary file is also referred to as a character stream.

 Subject: C Language
 Date: 11-June-2020

as file

We need a marker to mark the current position of the file from the beginning (in terms of bytes)

Initially the marker is at the beginning of the file. We can move the marker to any other position in

The new current position can be specified as an offset from the beginning the file.

A stream refers to the flow of data (in bytes) from one place to another (from program to file or vice-

Each line of characters in the stream may be terminated by a newline character.
Text streams are used for textual data, which has a consistent appearance from one

textual data, which is required to keep exact

aracters that a computer can process sequentially.

It is opened for one kind of operation (reading, writing, or appending) at any given time.

Page 2 of 4

Classification of file I/O functions

Opening Modes of File

Mode Meaning

r  Open a text file for reading only. If the file doesn’t exist, it returns null.

w  Opens a file for writing only.
 If file exists, than all the contents of that file are destroyed and new fresh

blank file is copied on the disk and memory with same name
 If file doesn’t exists, a new blank file is created and opened for writing.
 Returns NULL if it is unable to open the file

a  Appends to the existing text file
 Adds data at the end of the file.
 If file doesn’t exists then a new file is created.
 Returns NULL if it is unable to open the file.

rb  Open a binary file for reading

wb  Open a binary file for reading

ab  Append to a binary file

r+  Open a text file for read/write

w+  Opens the existing text file or Creates a text file for read/write

a+  Append or create a text file for read/write

Open a text file for reading only. If the file doesn’t exist, it returns null.

Opens a file for writing only.
If file exists, than all the contents of that file are destroyed and new fresh
blank file is copied on the disk and memory with same name

file doesn’t exists, a new blank file is created and opened for writing.
Returns NULL if it is unable to open the file

Appends to the existing text file
Adds data at the end of the file.
If file doesn’t exists then a new file is created.
Returns NULL if it is unable to open the file.

Open a binary file for reading

Open a binary file for reading

Append to a binary file

Open a text file for read/write

Opens the existing text file or Creates a text file for read/write

Append or create a text file for read/write

Open a text file for reading only. If the file doesn’t exist, it returns null.

If file exists, than all the contents of that file are destroyed and new fresh
blank file is copied on the disk and memory with same name

file doesn’t exists, a new blank file is created and opened for writing.

Opens the existing text file or Creates a text file for read/write

Page 3 of 4

Opening a File
 The general format for declaring and opening a file is:

 FILE *fp;
 fp=fopen(“filename”,mode”);

 Here, the first statement declares the variable fp as a “pointer to the data type FILE”.
 The second statement opens the file named filename with the purpose mode and the beginning

address of the buffer area allocated for the file is stored by file pointer fp.

Note: Any no. of files can be opened and used at a time.

Opening a File
 The closing a file ensures that all outstanding information associated with the file is flushed out from

the buffers and all links to the file are broken.
 In cases where there is a limit to the no. of files that can be kept open simultaneously, closing of

unwanted files help in opening the required ones.
 Another instance where we have to close a file is when we want to reopen the same file in different

mode.
 fclose() returns 0 if the file is closed successfully.
 The file is closed using library function fclose() as:

 fclose(fp);

 The fcloseall() closes all the files opened previously.

Reading a File
 To read contents from an existing file, we need to open that file in read mode that means “r” mode
 Algorithm to read data from a file:

 Open the file in read mode
 Read data from the file
 Write the data into an output device
 Repeat steps 3 and 4 until the end of file occurs
 Stop procedure.

Some high-level I/O functions

Function Name Operation
fopen() Create a new file for use

Opens an existing file for use

fclose() Closes file which was opened for us
fgetc() Read a character from a file
fputc() Writes a character to a file
fprintf() Writes a set of data values to a file
fscanf() Reads a set of data values from a file
fseek() Sets the position to a desired point in the file
ftell() Gives the current position in the file (in terms of bytes from the start)
rewind() Sets the position to the beginning of the file

Page 4 of 4

Example 1: Display contents of a file on screen.
include<stdio.h>
include<conio.h>
void main()
{
FILE *fp ;
char ch ;
clrscr();
fp = fopen ("PR1.C", "r") ;
while (1)
{
ch = fgetc (fp) ;
if (ch == EOF)
break ;
printf ("%c", ch) ;
}
fclose (fp) ;
}

On execution of above program it displays the contents of the file ‘PR1.C’ on the screen.

Let us now understand how it does the same.
Before we can read (or write) information from (to) a file on a disk we must open the file. To open the file we
have called the function fopen(). It would open a file “PR1.C” in ‘read’ mode, which tells the C compiler that
we would be reading the contents of the file.
Note that “r” is a string and not a character; hence the double quotes and not single quotes. In fact fopen()
performs three important tasks when you open the file in “r” mode:

 Firstly it searches on the disk the file to be opened.
 Then it loads the file from the disk into a place in memory called buffer.
 It sets up a character pointer that points to the first character of the buffer.

fopen() in a structure called FILE. fopen() returns the address of this structure, which we have collected in the
structure pointer called fp. We have declared fp as
FILE *fp ;

Once the file has been opened for reading using fopen(), as we have seen, the file’s contents are brought into
buffer (partly or wholly) and a pointer is set up that points to the first character in the buffer. This pointer is one
of the elements of the structure to which fp is pointing.

To read the file’s contents from memory there exists a function called fgetc(). This has been used in our program
as,
ch = fgetc (fp);

fgetc() reads the character from the current pointer position, advances the pointer position so that it now points
to the next character, and returns the character that is read, which we collected in the variable ch.
Note that once the file has been opened, we no longer refer to the file by its name, but through the file pointer fp.
We have used the function fgetc() within an indefinite while loop.
There has to be a way to break out of this while. When shall we break out... the moment we reach the end of file.
But what is end of file? A special character, whose ASCII value is 26, signifies end of file. This character is
inserted beyond the last character in the file, when it is created.
While reading from the file, when fgetc() encounters this special character, instead of returning the character
that it has read, it returns the macro EOF. The EOF macro has been defined in the file “stdio.h”. In place of the
function fgetc() we could have as well used the macro getc() with the same effect.

In the above program we go on reading each character from the file till end of file is not met. As each character is
read we display it on the screen. Once out of the loop, we close the file.

