
Page 1 of 3

NIELIT GORAKHPUR

Course Name: O Level (2nd Sem B1,
Topic: Pre-processor in C

What is Preprocessor?

 Preprocessor processes source program bef
 Produce a source code file with the preprocessing commands properly sorted out.
 Preprocessor commands are known as
 Preprocessor provides certain features.
 These features are also known as
 Preprocessor directives start with #sign.
 Preprocessor directives can be placed

Note: Place it at start of the program.

 Each preprocessor directive must be on

 Preprocessor Directives

 Macro Expansion
 File Inclusion
 Conditional compilation
 Miscellaneous directives

 Macro Expansion

 #define directive is known as macro expansion.

Definition:
 #define PI 3.1415

General Form:
 #define macro_template macro_expansion
 #define macro_name char_sequence

 Preprocessor search for macro definition.
 After finding #define directive
 Replace each macro_template with
 Best Practice: Use capital letters for macro template.
 Do not use semicolon ‘;’

 Benefits of Macro
 To write efficient programs.
 To increase readability of programs.
 Variable Vs Macro_template
 Compiler can generate faster and compact code for constant than it can for variables.
 When you are dealing with a constant, why use variable.
 A variable may change in the program.

Replace operator:
 #define AND &&
 #define OR | |

Replace condition:
 #define EXCELLENT (a>=75)

NIELIT GORAKHPUR

B1, B2 and B3 Batch)

Preprocessor processes source program before it is passed to compiler.
source code file with the preprocessing commands properly sorted out.

Preprocessor commands are known as directives.
features.

These features are also known as preprocessor directives.
Preprocessor directives start with #sign.
Preprocessor directives can be placed anywhere in the source program.

Note: Place it at start of the program.
Each preprocessor directive must be on its own line.

#define directive is known as macro expansion.

#define macro_template macro_expansion
#define macro_name char_sequence

Preprocessor search for macro definition.
ctive it search entire program for macro_template.

with macro_expansion.
Use capital letters for macro template.

To increase readability of programs.

Compiler can generate faster and compact code for constant than it can for variables.
When you are dealing with a constant, why use variable.
A variable may change in the program.

#define EXCELLENT (a>=75)

 Subject: C Language
 Date: 09-June-2020

source code file with the preprocessing commands properly sorted out.

Compiler can generate faster and compact code for constant than it can for variables.

Page 2 of 3

Replace statement:
 #define ALERT printf(“Security Alert”);

 Defined macro name can be used as a part of definition of other macro name.

 #define MIN 1
 #define MAX 9
 #define MIDDLE (MAX-MIN)/2

 No text substitution occurs if the identifier is within a quoted string.

 Macro With Arguments
 Macros can have arguments, same as functions

 #define ISEXCELLENT(x) (x >= 75)
 #define ISLOWER(x) (x>=97 && x<=122)

 Macros expansions should be enclosed within parenthesis.

 #define ISLOWER(x) (x>=97 && x<=122)
 if(!ISLOWER(‘a’));

 Use ‘\’ to split macro in multiple line.

 #define HLINE for(i=0; i < 40; i++)\
 printf(“_”);

Differences between Structure and Union

Macro Function
Macro is Preprocessed Function is Compiled
No Type Checking Type Checking is Done
Code Length Increases Code Length remains Same
Use of macro can lead to side effect No side Effect
Just the replacement of the code. Passing arguments, doing calculation, returning

results. (More serious work).
Macros make the program run faster. Function calls and return make the program

slow.
Before Compilation macro name is replaced
by macro value

During function call , Transfer of Control takes
place

Useful where small code appears many time Useful where large code appears many time

Generally Macros do not extend beyond one
line

Function can be of any number of lines

Macro does not Check Compile Errors Function Checks Compile Errors

 File Inclusion
 Causes one file to be included in another.

 #include <filename> //OR
 #include “filename”

 <filename>: search the directory on current directory only.
 “filename”: search the directory on current directory and specified directories as specified in the

include search path.
 Divide a program in multiple files.
o Each file contains related functions.

 Some functions or macros are required in each program.
o Put them in a file (Library).
o Include them in program that need them.

Page 3 of 3

 Nested includes: Included file may have more included files in it.

 Condtional Compilation

Write single program to run on different environments.
 #ifdef – if defined
 #endif – end if
 #else – else
 #ifndef – in not defined
 #if – if
 #elif – else if

#ifdef & #endif

General form:
 #ifdef macroname
 statement sequence
 #endif

 if macro name has been defined using #define the code between #ifdef & #endif will execute.

#else

 Use #else with #ifdef same as else with if.

General-form:
 #ifdef macroname
 statement sequence
 #else
 statement sequence
 #endif

#ifndef
 #ifndef is just opposite to #ifdef

 #ifndef __file_h
 #define __file_h

 #if directive test whether an expression evaluates to nonzero value or not.
 #elif used same as else if.

Where conditional compilation?
 Instead of comments.

o Nested comments not allowed in C.

 Run the same code on different environment.
 To avoid multiple declaration error.

Advantages of Macro
 The advantage of using macro is the execution speed of the program fragment.
 When the actual code snippet is to be used, it can be substituted by the name of the macro.

The same block of statements, on the other hand, need to be repeatedly hard coded as and when required.

Disadvantages of Macro
 The disadvantage of the macro is the size of the program.
 The reason is, the pre-processor will replace all the macros in the program by its real definition prior

to the compilation process of the program.

