
NIELIT, Gorakhpur

Course Name: A-level (1st Sem.) Subject: IoT

Topic: Developing Bootloader for Arduino Date: 24.04.2020

Introduction

Bootloader, is basically the initial piece of code which runs whenever any micro-controller is

powered up or resets. It is similar to the concept of BIOS which run in our PC at the time we

power up it. In case of BIOS, it waits for a user input for changing Boot options/settings. If it

does not get any such inputs, it will start with the pre-installed OS.

A similar thing happens with Arduino bootloader. Whenever the Arduino is powered up or

reset, it looks for external inputs (for uploading new program). If it receives no such inputs, it

starts executing the program that was uploaded last.

Memory Sections

Arduino uses avr microcontrollers for their platforms which has program memory sections as

shown in above figure. Boot Loader section is placed at the bottom of flash memory.

The bootloader program is written in the bootloader section, and the application program is

written in the application section.

How Bootloader Starts

http://en.wikipedia.org/wiki/BIOS

As we know that whenever a microcontroller is reset or is powered up, generally it starts

program execution from the reset vector i.e. from 0x0000 program memory address.

We can change this reset vector address (0x0000) to bootloader section start address in case if

we are using bootloader on the microcontroller. That means, whenever the microcontroller

is get reset/powered up, it starts program execution from the bootloader section.

Arduino bootloaders do the same thing and execute the bootloader program when the

microcontroller (used by Arduino) is reset/powered up i.e. the microcontrollers start execution

of program from boot loader section’s start address.

If we refer AVR microcontrollers (which are used for arduino) datasheet we can see that Boot

Reset Fuse can be programmed so that Reset Vector is pointing to the Boot Flash start

address after reset as shown in below figure.

Atmega328p datasheet (page no. 267)

Hence, we can set the reset vector to the start of the bootloader section on power up/reset.

Need of a Bootloader

Most of the times, bootloaders in microcontrollers are used to simplify the uploading of

programs to the microcontrollers. They can also be used for initializing IO devices connected

to the microcontrollers before they begin the main application program.Arduino bootloaders

use the simple serial communication (UART) to download the hex file of program and write it

in application section.

Inside the Bootloader

Now let’s see in brief about how Arduino Bootloader is written and how it communicates with

Arduino IDE while uploading programs.

We can find arduino bootloader program at

arduino-version\hardware\arduino\bootloaders\optiboot

As shown in below figure.

The boot headerfile (boot.h) is included from avr toolchain. This is modified/optimised version

of avr toolchain boot header file(<avr/boot.h>). You can find avr boot header file at arduino-

version\arduino-1.0.5-r2\hardware\tools\avr\avr\include\avr

avr boot header file uses sts(which requires two machine cycle) instruction to access SPM

register whereas boot header file used in arduino bootloader uses out (which requires only one

machine cycle) instruction to access SPM register. This important optimisation is already

mentioned in avr toolchain boot header file for smaller devices.

Boot header file contains the function related to write/read flash memory (in manner of page

by page). Also, it contains the function for writing/reading fuse, lock, and signature bits.

stk500 header file (stk500.h) contains the STK500 commands which are used for reliable

handshaking communication in between arduino and avrdude program while uploading hex

file.

Pin definition header file (pin_defs.h) contains port definition for LED (arduino on-board

LED) which is used as status LED blink while flashing the arduino.

optiboot.c file contains the main program flow of bootloader (i.e. receiving hex serially and

writing it to program memory). Other files (boot.h, pin_defs.h, stk500.h) are included in

optiboot.c file.

Optiboot program starts with MCUSR (MCU Status Register) status register which provides

information about the reset source that caused reset. If reset source is not external (by pulling

http://www.atmel.com/tools/STK500.aspx

reset pin low), then it will directly start the application program. As shown in below figure, it

will call appStart() function from where it jumps to direct 0x0000 reset address.

Note that here MCUSR is cleared after use hence we cannot use it again for getting the reset

source in our application program if we need. This is not an issue since we can modify the

bootloader as per our requirement if we want.

If reset source is external (by pulling reset pin low) then it will avoid jump to application code

directly and prepare for serial communication with avrdude running at PC/laptop to read hex

file and flash it into program memory.

Watchdog is prepared for 1 second timeout in program to get reset if there is any error while

uploading code or to get reset while program memory write completes.

It will then initialize serial communication (here UART) to communicate with arduino IDE

running at pc/laptop.

After above initializations, it starts its forever loop to read bytes (command/data byte) serially

using protocol used by STK500.

Program memory is written/updated in page by page fashion. The page size varies according

to the controller. For example, Atmega328/328P has a page size of 64 words (i.e. 128 bytes)

whereas Atmega88A/88PA has a page size of 32 words (i.e. 64 bytes).

The process of writing program memory is carried out in page by page manner as follow.

• In above mentioned forever loop hex bytes coming serially from arduino uploader

running at pc/laptop are first copied to the temporary data memory (say RAM).

• After copying page sized hex bytes in temporary data memory, program memory first

page erase is processed.

• After erase of page, first it is filled (just fill not write) with hex bytes stored in temporary

data memory.

• Then using SPM page write instruction, page write/update is successfully carried out.

• The above process of reading data from serial and then writing it to program memory

in page by page fashion is carried out until complete hex bytes are written/updated in

program memory.

• After completion of hex file write operation, opposite process is carried out i.e. reading

from program memory and sending it serially to pc/laptop in page by page manner to

verify whether hex file got written/updated in program memory or not.

Below is sample page write function which is already given in boot header file

#include <inttypes.h>

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

void boot_program_page (uint32_t page, uint8_t *buf)

{

 uint16_t i;

 uint8_t sreg;

 // Disable interrupts.

 sreg = SREG;

 cli();

 eeprom_busy_wait ();

 boot_page_erase (page); //erase page

 boot_spm_busy_wait (); // Wait until the memory is erased.

 for (i=0; i<SPM_PAGESIZE; i+=2)

 {

 // Set up word from temp buffer.

 uint16_t w = *buf++;

 w += (*buf++) << 8;

 boot_page_fill (page + i, w); //fill (page + i) address with word

 }

 boot_page_write (page); // Store/write buffer in flash page.

 boot_spm_busy_wait(); // Wait until the memory is written.

 // Reenable RWW-section again. We need this if we want to jump back

 // to the application after bootloading.

 boot_rww_enable ();

 // Re-enable interrupts (if they were ever enabled).

 SREG = sreg;

}

All above is basic general idea about how hex file gets written in program memory.The

functions used in above program i.e. boot_page_fill (page address, word data),

boot_page_write(page address), boot_spm_busy_wait()etc.all are available in boot header

(boot.h) file which are written with inline assembly instructions.

How does a program residing at the bottom of the program memory itself manages to write

into the program memory? i.e. how program in boot section writes into the application section.

This is possible since avr microcontrollers provides a self-programming

mechanism(SPM) for downloading and uploading code by the microcontroller itself. The

Self-Programming can use any available data interface and associated protocol to read code

and write (program) that code into the Program memory.

