
NIELIT GOPRAKHPUR
Course Name: A Level (2nd Sem) Subject: Data Structure using C++
Topic: Inheritance Date: 19-03-2020

Inheritance
Introduction:

In C++, it is possible to inherit attributes and methods from one class to another. We group the
"inheritance concept" into two categories:

 derived class (child) - the class that inherits from another class
 base class (parent) - the class being inherited from

To inherit from a class, use the : symbol.
In t // Base class
class Vehicle {
 public:
 string brand = "Ford";
 void honk() {
 cout << "Tuut, tuut! \n" ;
 }
};

// Derived class
class Car: public Vehicle {
 public:
 string model = "Mustang";
};

int main() {
 Car myCar;
 myCar.honk();
 cout << myCar.brand + " " + myCar.model;
 return 0;
}
Multilevel Inheritance
A class can also be derived from one class, which is already derived from another class.
In the following example, MyGrandChild is derived from class MyChild (which is derived
from MyClass)
Example
// Base class (parent)
class MyClass {
 public:
 void myFunction() {
 cout << "Some content in parent class." ;
 }
};

// Derived class (child)

NIELIT GOPRAKHPUR
class MyChild: public MyClass {
};

// Derived class (grandchild)
class MyGrandChild: public MyChild {
};

int main() {
 MyGrandChild myObj;
 myObj.myFunction();
 return 0;
}
Multiple Inheritance
A class can also be derived from more than one base class, using a comma-separated list:
Example
// Base class
class MyClass {
 public:
 void myFunction() {
 cout << "Some content in parent class." ;
 }
};

// Another base class
class MyOtherClass {
 public:
 void myOtherFunction() {
 cout << "Some content in another class." ;
 }
};

// Derived class
class MyChildClass: public MyClass, public MyOtherClass {
};

int main() {
 MyChildClass myObj;
 myObj.myFunction();
 myObj.myOtherFunction();
 return 0;
}
Access Specifiers
You learned from the Access Specifiers chapter that there are three specifiers available in C++.
Until now, we have only used public (members of a class are accessible from outside the class)
and private (members can only be accessed within the class). The third specifier, protected, is
similar to private, but it can also be accessed in the inherited class:

NIELIT GOPRAKHPUR
Example
// Base class
class Employee {
 protected: // Protected access specifier
 int salary;
};

// Derived class
class Programmer: public Employee {
 public:
 int bonus;
 void setSalary(int s) {
 salary = s;
 }
 int getSalary() {
 return salary;
 }
};

int main() {
 Programmer myObj;
 myObj.setSalary(50000);
 myObj.bonus = 15000;
 cout << "Salary: " << myObj.getSalary() << "\n";
 cout << "Bonus: " << myObj.bonus << "\n";
 return 0;
}
Exercise:

1. What is inheritance? ...
2. How to implement inheritance ?
3. What is Base class ?
4. What is Subclass?
5. What is the difference between public and private access specifier ?
6. What are the advantages of inheritance ?
7. What are the types of inheritance ?
8. How to implement data and functionality as a single entity ?

