<u>Course Name: A Level (1st Sem)</u> <u>Topic: Coded Binary</u>

Subject: CO Date: 17-04-20

<u>Codes in Number Systems:</u> Since we have learnt that three specific coding systems are proposed by mathematicians and computer scientists for easy conversions among different number systems, following are these three:

- Binary Coded Octal
- Binary Coded Hexadecimal
- Binary Coded Decimal

Binary Coded Octal:

Binary Coded Octal is a 3-digit binary representation of a single octal digit. It is based on an analogy that every octal digit can be represented by only 3-digit binary number. Basically the analogy is: 2³ always equals to 8 which is the base of Octal Number System.

The following table shows the count of Octal Number System in terms of 3-digit binary numbers:

Binary Coded Hexadecimal:

Very similar to BCO, Binary Coded Hexadecimal is a 4-digit binary representation of a single Hexadecimal digit. It is based on the analogy that every Hexadecimal digit can be represented by only a 4-digit binary number. Basically the analogy is: 2⁴ always equals to 16 which is the base of Hexadecimal Number System.

The following table shows the count of Hexadecimal Number System in terms of 4-digit binary numbers:

	Hex Dec	ВСН	Hex Dec	ВСН
C 5 7 1100 0101 0111 Binary Coded Hexadecimal	0	0000	D	1101
	1	0001	Ł	1110
	2	0010	F	1111
	3	0011	10	0001 0000
	4	0100	11	0001 0001
	5	0101		
	6	0110		
	7	0111		
	8	1000	ЗA	0011 1010
	9	1001	4D	0100 1101
	A	1010	2B6	0010 1011 0110
	В	1011	3DA	0011 1101 1010
	С	***************************************	C57	1100 0101 0111

Binary Coded Decimal:

Binary Coded Decimal is also a 4-digit binary representation of a single Decimal digit. Since the base of Decimal Number System is 10 which can never be represented by 3-digit binary representation. If we use 4-digits we'll be wasting 6 different representations. But ultimately, better is to choose 4-digits.

The adjacent table shows the count of Decimal Number System in terms of 4-digit binary numbers:

Assignments:

<u>1.</u> BCD and BCH both are 4-digit codes. What is the difference there?