Course Name: A Level (1st Sem)

<u>Topic: Multiplication Algorithm</u> <u>Date: 02-06-20</u>

<u>Multiplication Algorithms:</u> Multiplication via pen and paper method is a compound practice of successive left shift and addition. But while working on digital hardware, the method is slightly different. The shift operation is a right shift instead of a left shift while the rest of the task is implemented in the following two ways:

1. Hardware Algorithm

2. Booth Algorithm

Hardware Algorithm:

The multiplicand is stored in a register B and multiplier in Q. Another register A of same size is taken as to work like Accumulator.

A sequence counter SC is taken and initialized by the total count of bits in register B. A flip-flop E is used to store the excess carry while adding A with B. A complete set of EAQ participates in logical right shift.

With each shift operation the SC is decremented. When after many iterations, SC becomes absolutely zero; we stop the process and extract the result from AQ.

Consider the following flow-chart:

Subject: CO

NIELIT Gorakhpur

The following example shows the entire operation with multiplicand (13) and multiplier (17).

The result that we get at last is 221:

Accumulator [A] = 000000		E=0		SC=6	
Q_n	Description	E	Α	Q	SC
		0	000000	010001	110
1		0	000000		
	EA ← A + B		001101		
		0	001101	010001	
	SHR (EAQ), SC ← SC − 1	0	000110	101000	101
0	SHR (EAQ), SC ← SC − 1	0	000011	010100	100
0	SHR (EAQ), SC ← SC − 1	0	000001	101010	011
0	SHR (EAQ), SC ← SC − 1	0	000000	110101	010
1			000000		
	EA ← A + B		001101		
		0	001101	110101	
	SHR (EAQ), SC ← SC − 1	О	000110	111010	001
0	SHR (EAQ), SC ← SC − 1	0	000011	011101	000

Assignment:

- **<u>1.</u>** Draw the flow chart of Hardware Algorithm.
- **2.** Multiply 23 and 21 using Hardware Algorithm.