Programming and Problem Solving through C Language
O Level / A Level

Chapter -3 : Introduction to ‘C’ Language

Logical operators
e These operators are used [o perform logical operations on the given expressions.
e There are 3 logical operators in C language.

e They are, logical AND (&&), logical OR {|]) and logical NOT (1).

S.no Operators Name Example Description
1 8& logical (x>5)&&(y<5) | It returns true when both conditions are true.
AND
2 logical {(x==10)|| It returns true when at-least one of the condition is
l OR {y==10) frue.
togical (x>5)38 It :everses the state _nf the npe_rand “((x=5) && (y<5))"
3 | If *((x=5) && (y<5))" is true, logical NOT operator
NOT (y<3)) ;
makes it false

Example program for logical operators in C

In this program, operators (&% || and 1) are used to perform logical operations on the given

expressions.
e && operator
» ‘if clause” becomes true only when both conditions (m>n and ml =0) is true.
» Else, it becomes false.
® || Operator
» if clause” becomes true when any one of the condition (o=>p || pl=20) is true.
> It becomes false when none of the condition is true.
e | Operator
It is used to reverses the state of the operand.

If the conditions (m>n && mi=0) is true, true (1) is returned.

Y

e

Y

This value is inverted by "I" operator.

¥

So, ‘I (m=n and m! =0)" returns false (0).

#include <stdio.h>

int main()

{
int m=40, n=20;
int o=20, p=30;
iflm>n && m!=0)

|
printf("&8& Operator: Both conditions are true\n");
b
iflo>p || p!=20)
|
printf("| | Operator: Only one condition is true\n");
&
if(!(m>n && m!=0))
{
printf("! Operator: Both conditions are true\n");
¥
else
{
printf("! Operator: Both conditions are true. "\
"But, status is inverted as false\n");
¥
¥
Output

&& Operator: Both conditions are true
|| Operator: Only one condition is true
| Operator: Both conditions are true. But, status is inverted as false

Bit wise operators
® These operators are used to perform bit operations.

® [Decimal values are converied info binary values which are the sequence of bits and bit wise
operators work on these bits.

e Bit wise operators in C language are & (bitwise AND), | (bitwise OR), ~ (bitwise OR}, * (XOR), ==
(left shift) and >> (right shift).

Truth table for bit wise operation

X Y X|Y X &Y XY
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Bit wise operators

Operator symbol Operator name
& Bitwise AND

| Bitwise OR

~ Bitwise NOT

2 XOR

< Left Shift

== Right Shift

® Consider x=40 and y=80.

® Binary form of these values are given below.

> x=00101000.

» y=01010000.

® All bit wise operations for x and y are given below.

»

>

P

»

x&y = 00000000 (binary) = 0 (decimal).
x|y = 01111000 (binary) = 120 (decimal).

=111 11111ttt 1111 111111111110101 11
=-41 (decimal).

x*y = 01111000 (binary) = 120 (decimal).
x =< 1 = (01010000 (binary) = 80 (decimal).

x =>1 = 00010100 (binary) = 20 (decimal).

e Note:

>

Bit wise NOT - Walue of 40 in binary is
00101000.

¥ So, all 0's are converted into 1°s in bit wise NOT operation.

¥ Bit wise left shift and right shift : In left shift operation “x << 1 °, 1 means that the bits will be

left shifted by one place.

If we use it as “x << 2 “, then. it means that the bits will be left shifted by 2 places.

#include <stdio.h>
int main()

{
int m=40, n=80, AND_opr, OR_opr, XOR_opr, NOT_opr;
AND_opr = (mé&mn);
OR_opr = (m]n);
NOT_opr = {(~m);
XOR_opr = {m~n);
printf("AND_ opr value = % d\n", AND_ opr);
printf("OR_opr value = %d\n", OR_opr);
printf("NOT_opr value = %%d\n", NOT_opr);
printf("XOR_opr value = %d\n", XOR_opr);
printf("left_shift value = %d\n", m << 1);
printf{"right_shift value = %d\n", m >> 1);
¥
Output:

AND_opr value = 0
OR_opr value = 120
NOT_ opr value = -41
XOR_opr value 120
left_shift value = 80
right shift value = 20

Conditional or ternary operators

= Conditional operators return one value if condition i1s true and returmns another value is condition
is false.

® This operator is also called as ternary operator.

¥ Syntax - (Condition? true value: false value);

¥» Example: (A=10070: 1);
® [n above example, If A is greater than 100, 0 is returned else 1 is returned.
This is equal to if else conditional statements.

#include <stdio.h>
int main()

1
int x=1, v;
v = (x ==1 2 2 : 0);
printf("x value is 2ed\n", x);
printf("y wvalue is %%d", v):

by

Output:

x value is 1
y value is 2

Increment/decrement Operators

e Increment operators are used to increase the value of the variable by one and decrement
operators are used to decrease the value of the variable by one in C programs.

® Syntax

¥ Increment operator : ++var_name; (or) var_name++,

» Decrement operator . — - var_name, (or) var_name — -;
e Example:

¥ Increment operator - ++ i ;i ++ ;

» Decrement operator: —-1;1—-;
Example program for increment operators in C
® In this program, value of “i" is incremented one by one from 1 up to 9 using “i++" operator and
output is displayed as“12 345678 9"

#include <stdio.h>
int main()

{
inti=1;
while(i<10)
; |
printf{("%d ",i);
I+
}
€
Output:

123456789

Special Operators in C

® Below are some of special operators that C language offers.

S.no Operators Description

This is used to get the address of the variable.

1 &

Example : &a will give address of a.
2 = This is used as pointer to a vanable.

Example : * a where, * is pointer to the variable a.
3 Sizeof () This gives the sizeof the variable.

Example : sizeof(char) will give us 1.

Example program for & and * operators in C

® |n this program, “&" symbol is used to get the address of the variable and “* symbol is used to
get the value of the variable that the pointer is pointing to.

® Please refer G — pointer topic to know more about pointers.

#include <stdio.h>

int main()
X
int *ptr, q;
q = 20;
/* address of q is assigned to ptr *f
ptr = &q;

/* display q's value using ptr variable */
printf("%d", *ptr);

return 0;
by
Qutput:
50

Example program for sizeof() operatorin C

e sizeof() operator is used fo find the memaory space allocated for each C data types.

#include <stdio.h>

#Zinclude <limits.h>

int main()

{
int a;
char b;
float c;
double d;
printf("Storage size for int data type:%d \n", sizeof(a));
printf("Storage size for char data type:2%d \n", sizeof(b));
printf("Storage size for float data type:%d \n", sizeof(c));
printf("Storage size for double data type:2d\n", sizeof(d));
returm O;

¥

Output:

Storage size for int data type: 4
Storage size for char data type: 1
Storage size for float data type: 4
Storage size for double data type: 8

