

Programming and Problem Solving through C Language
O Level / A Level

Chapter - 7 : Storage Classes

Storage Class Types

Storage
Specifier

Storage Initial Value Scope Life Time

auto Stack Garbage Within Block End of Block

extern Data Segment Zero Global,

Multiple Files

Till end of
program

static Data Segment Zero Within Block Till end of
Program

register CPU Register Garbage Within Block End of Block

Register Variable

 These variables are stored in one of the machine′s register instead of RAM and are declared
using register keyword.

eg. register int count;

 This means that the variable has a maximum size equal to the register size (usually one
word) and cannot have the unary ‘&’ operator applied to it (as it does not have a memory
location).

 As register memory access are much faster than a RAM memory access, keeping frequently
accessed variables in the register lead to faster execution of program.

 Register should only be used for variables that require quick access such as counters.
 It should also be noted that defining ‘register’ does not mean that the variable will be stored

in a register.
 Since only few variables can be placed in the register, it is important to carefully select the

variables for this purpose.
 However, C will automatically convert register variables into nonregister variables once the

 limit is reached.
 Don′t try to declare a global variable as register. Because the register will be occupied

during the lifetime of the program.

Static Variables

 The value of static variables persists until the end of the program.
 It is declared using the keyword static like

static int x;

static float y;

 It may be of external or internal type depending on the place of the declaration.

 Static variables are initialized only once, when the program is compiled.
 Static is the default storage class for global variables.
 The two variables below (count and road) both have a static storage class.

static int count;

int road;

void main()

{

 printf(“%d”, road);

}

 Static variables can be ‘seen’ within all functions in this source file.
 At link time, the static variables defined here will not be seen by the object modules that are

brought in.
 Static can also be defined within a function.
 If this is done, the variable is initialized at run time, but is not reinitialized, when the functio

n is called.
 Inside a function, static variable retains its value during various calls.

Example
static int count;
void func();
static count=5; // Global variable static is the default

void main()
{

 while (count)
 {
 func();
 }

}

void func()
{

 static int i=5;
 i++;
 printf(" i is %d and count is %d\n", i , count);

}

Output
i is 6 and count is 4
i is 7 and count is 3
i is 8 and count is 2
i is 9 and count is 1
i is 10 and count is 0

Internal Static Variable
 Are those which are declared inside a function?
 Scope of Internal static variables extends up to the end of the program in which they are

defined.
 Internal static variables are almost same as auto variable except they remain in existence

(alive) throughout the remainder of the program.
 Internal static variables can be used to retain values between function calls.

void main()
{
 int i;
 for(i=1 ; i<=3 ; i++)
 func()
}

void func()
{
 static int x=0;
 x=x+1;
 printf(" x= %d \n",x);
}

Output
 x=1
 x=2
 x=3

External Static Variables
 An external static variable is declared outside of all functions and is available to all the

functions in the program.
 An external static variable seems similar simple external variable but their difference is that

static external variable is available only within the file where it is defined while simple
external variable can be accessed by other files.

Static Function
 Static declaration can also be used to control the scope of a function.
 If one wants a particular function to be accessible only to the functions in the file in which it

 is defined and not to any function in other files, declare the function to be static.
eg. static int power(int x , int y)

{

}

