

Programming and Problem Solving through C Language
O Level / A Level

Chapter - 11 : File Processing

Writing and Reading File Data

 A program that uses a disk file can write data to a file, read data from a file, or a combination of
the two.

 One can write data to a disk file in three ways:

 First way:
o One can use formatted output to save formatted data to a file.
o One should use formatted output only with text­mode files.
o The primary use of formatted output is to create files containing text and numeric data to

 be read by other programs such as spreadsheets or databases.

 Second way:
o One can use character output to save single characters or lines of characters to a file.
o It′s possible to use character output with binary­mode files, it can be tricky.
o One should restrict character­mode output to text files.
o The main use of character output is to save text (but not numeric) data in a form that can

 be read by C, as well as other programs such as word processors.
 Third way:

o One can use direct output to save the contents of a section of memory directly to
a disk file.

o This method is for binary files only.

 When one wants to read data from a file, he has the same three options: formatted input,
character input, or direct input.

 The data will be read in the same mode that it was saved in.

Character Input

 There are three character input functions: getc() and fgetc() for single characters, and fgets()
for lines.

 The functions getc() and fgetc() are identical and can be used interchangeably.

 They input a single character from the specified stream.

 Here is the prototype of getc(), which is in STDIO.H:

int getc (FILE *fp);

 The argument fp is the pointer returned by fopen() when the file is opened.

 The function returns the character that was input or EOF on error.

 getc() was used in earlier programs to input a character from the keyboard.

 This is another example of the flexibility of C′s streams­­the same function can be used for
keyboard or file input.

Example

#include<stdio.h>

int main()
{FILE *fp;
 int c, n=0;

 fp=fopen("file.txt","r");
 if(fp==NULL)
 {
 printf("Error in File");
 return(­1); // indicate errro
 }

 do {
 c=fgetc(fp);

 if(feof(fp)) break;

 printf("%c",c);
 } while(1);

 fclose(fp);
 return(0);
}

The fgets() Function

 To read a line of characters from a file, use the fgets() library function.
 The prototype is: char *fgets(char *str, int n, FILE *fp);
 The argument str is a pointer to a buffer in which the input is to be stored, n is the maximum

number of characters to be input, and fp is the pointer to type FILE that was returned by fopen()
when the file was opened.

 Characters are read until a newline is encountered or until n­1 characters have been read,
whichever occurs first.

 If successful, fgets() returns str.

Example

#include<stdio.h>
,

int main()
{
 FILE *fp;
 char str[60];

 fp=fopen("file.txt","r");

 if(fp==NULL)
 {
 printf("Error in File");
 return(­1); // indicate errro
 }

 if (fgets(str,60,fp) != NULL)
 puts(str);

 fclose(fp);
 return(0);
}

The putc() Function

 The library function putc() writes a single character to a specified stream.

 Its prototype in STDIO.H is as shown below: int putc(int ch, FILE *fp);

 The argument ch is the character to output.

 The argument fp is the pointer associated with the file (the pointer returned by fopen() when the
file was opened).

 The function putc() returns the character just written if successful or EOF if an error occurs.

 The symbolic constant EOF is defined in STDIO.H, and it has the value ­1.

 Because no "real" character has that numeric value, EOF can be used as an error indicator (with
text­mode files only).

Example

#include<stdio.h>

int main()
{
 FILE *fp;
 int ch;

 fp=fopen("file.txt","w+");

 for(ch=33; ch<=100; ch++)
 fputc(ch,fp);

 fclose(fp);
 return(0);
}

The fputs() Function

 To write a line of characters to a stream, use the library function fputs().
 This function works just like puts().
 The only difference is that with fputs() one can specify the output stream.
 Also, fputs() doesn′t add a newline to the end of the string; one must explicitly include it.
 Its prototype in STDIO.H is:
 char fputs(char *str, FILE *fp);
 The argument str is a pointer to the null­terminated string to be written, and fp is the pointer to

type FILE returned by fopen() when the file was opened.
 The string pointed to by str is written to the file, minus its terminating \0.
 The function fputs() returns a non­negative value if successful or EOF on error.

Example

#include<stdio.h>

int main()
{
 FILE *fp;
 int ch;

 fp=fopen("file.txt","w+");

 fputs("This is a C Programming", fp);

 fclose(fp);
 return(0);
}

