Programming and Problem Solving through C Language
O Level / A Level

Chapter - 11 : File Processing

Writing and Reading File Data

A program that uses a disk file can write data to a file, read data from a file, or a combination of
the two.

One can write data to a disk file in three ways:

First way:
o One can use formatted output to save formatted data to a file.
o One should use formatted output only with text-mode files.

o The primary use of formatted output is to create files containing text and numeric data to
be read by other programs such as spreadsheets or databases.

Second way:
o One can use character output to save single characters or lines of characters to a file.
o It's possible to use character output with binary-mode files, it can be tricky.
o One should restrict character-mode output to text files.

o The main use of character output is to save text (but not numeric) data in a form that can
be read by C, as well as other programs such as word processors.

Third way:
o One can use direct output to save the contents of a section of memory directly to
a disk file.

o This method is for binary files only.

When one wants to read data from a file, he has the same three options: formatted input,
character input, or direct input.

The data will be read in the same mode that it was saved in.

Character Input

There are three character input functions: getc() and fgetc() for single characters, and fgets()
for lines.

The functions getc() and fgetc() are identical and can be used interchangeably.
They input a single character from the specified stream.
Here is the prototype of getc(), which is in STDIO.H:

int getc (FILE *fp);
The argument fp is the pointer returned by fopen() when the file is opened.
The function returns the character that was input or EOF on error.
getc() was used in earlier programs to input a character from the keyboard.

This is another example of the flexibility of C's streams--the same function can be used for
keyboard or file input.

Example

#include<stdio.h>

int main()

{FILE *fp;
int ¢, n=0;
fp=topen("file.txt","r");
if(fp==NULL)
{

printf("Error in File"),
return(-1); // indicate errro

H
do {

c=fgetc(fp);

if(feof(fp)) break;

printf("%c",c);

+ while(1);
fclose(fp);
return(0);

}

The fgets() Function

e To read a line of characters from a file, use the fgets() library function.

e The prototype is: char *fgets(char *str, int n, FILE *fp);

e The argument str is a pointer to a buffer in which the input is to be stored, n is the maximum
number of characters to be input, and fp is the pointer to type FILE that was returned by fopen()

when the file was opened.

e Characters are read until a newline is encountered or until n-1 characters have been read,

whichever occurs first.
e If successful, fgets() returns str.

Example
#include<stdio.h>

int main()

{
FILE *fp;
char str[60];

fp=fopen("file.txt","r");

if(fp==NULL)
{
printf("Error in File"),
return(-1); // indicate errro

§
if (fgets(str,60,fp) '= NULL)
puts(str);
fclose(fp);
return(0);
}

The putc() Function

The library function putc() writes a single character to a specified stream.
Its prototype in STDIO.H is as shown below: int putc(int ch, FILE *fp);
The argument ch is the character to output.

The argument fp is the pointer associated with the file (the pointer returned by fopen() when the
file was opened).

The function putc() returns the character just written if successful or EOF if an error occurs.
The symbolic constant EOF is defined in STDIO.H, and it has the value -1.

Because no "real" character has that numeric value, EOF can be used as an error indicator (with
text-mode files only).

Example

#include<stdio.h>

int main()

{
FILE *fp;
int ch;

fp=fopen("file.txt","w+");

for(ch=33; ch<=100; ch++)
fputc(ch,fp);

fclose(fp);
return(0);

}

The fputs() Function

e To write a line of characters to a stream, use the library function fputs().

e This function works just like puts().

e The only difference is that with fputs() one can specify the output stream.

e Also, fputs() doesn't add a newline to the end of the string; one must explicitly include it.
e Its prototype in STDIO.H is:

e char fputs(char *str, FILE *fp);

e The argument str is a pointer to the null-terminated string to be written, and fp is the pointer to
type FILE returned by fopen() when the file was opened.

e The string pointed to by str is written to the file, minus its terminating \0.
e The function fputs() returns a non-negative value if successful or EOF on error.

Example

#include<stdio.h>

int main()

{
FILE *fp;
int ch;

fp=fopen("file.txt","w+");
fputs("This is a C Programming", fp);

fclose(fp);
return(0);

