
 Programming and Problem Solving through C Language
O Level / A Level
 Chapter - 10 : Self Referential Structures and Linked Lists

 Comparison of arrays and Linked List

 Arrays Linked List
1. Data Structure Static : Needs to define the size of arrays

at compile time. It can not grow or shrink
at runtime.

Dynamic- No need to define the
size of Linked List. It can grow or
shrink at runtime.

2. Insertion Difficult : Need to shift the elements for
insertion of new value.

Easier- No need to shift the
elements for insertion of new
value.

3. Deletion Difficult : Need to shift the elements
after deletion of value.

Easier- No need to shift the
elements after deletion of value.

4. Memory
Wastage

In arrays there is a lot of memory
wastage, as if we have used only 10
spaces from the allocated 100 spaces.

Increase or decrease in size of the
Linked List at runtime, helps to
reduce the memory wastage.

5. Implementation
of Stack and
Queue

Difficult to implement the stack and
queue data structures using arrays.

Easy to implement the stack and
queue data structures using
arrays.

6. Memory Usage Memory required for storing the values
only. No Extra overhead.

More memory required to store
values and address of next node.
More overhead to store values.

7. Traversal Element access in arrays is easy. Any
element can be accessed directly.

Element traversal is difficult. We
can not randomly access any
element.

8. Reverse
Traversing

Reverse traversing is easy in singly
linked list.

Reverse traversing is difficult in
singly linked list. Address of only
next node is stored, so reverse
traversing is not possible.

Stack
 A stack is a container of objects that are inserted and removed according to the last-in first-

out (LIFO) principle. A stack is a limited access data structure - elements can be added and removed from the
stack only at the top. A stack is a recursive data structure. Example - Stack of books; you can remove only the top book, also you can add a new book
on the top. Two operations are allowed:

1. push the item into the stack(to add the item), and
2. pop the item out of the stack(to remove the item)

Queue

 A queue is a container of objects (a linear collection) that are inserted and removed
according to the first-in first-out (FIFO) principle.

 An example of a queue is a line of students on the fees deposit counter.
 Two operations are allowed enqueue and dequeue.

1. Enqueue means to insert an item into the back of the queue,
2. Dequeue means removing the front item.

Comparison of Stack and Queue
STACKS QUEUES

1. Stacks are based on the LIFO principle,
i.e., the element inserted at the last, is
the first element to come out of the list.

Queues are based on the FIFO principle,
i.e., the element inserted at the first, is the
first element to come out of the list.

2. Insertion and deletion in stacks takes
place only from one end of the list
called the top.

Insertion and deletion in queues takes
place from the opposite ends of the list.
The insertion takes place at the rear of the
list and the deletion takes place from the
front of the list.

3. Insert operation is called push
operation.

Insert operation is called enqueue
operation

4. Delete operation is called pop
operation.

Delete operation is called dequeue
operation.

5. In stacks we maintain only one pointer
to access the list, called the top, which
always points to the last element
present in the list.

In queues we maintain two pointers to
access the list. The front pointer always
points to the first element inserted in the
list and is still present, and the rear pointer
always points to the last inserted element.

.

