

Programming and Problem Solving through C Language
O Level / A Level

Chapter - 6 : Functions

Approach of Problem Solving

There are three general approaches to writing a program:

1. Top down ­ In the top down approach one starts with the top­level routine and move down to
the low level routine.

2. Bottom up ­ The bottom­up approach works in the opposite direction on begins with the
specific routines, build them into progressively more complex structures, and end at the top
level routine.

3. Ad hoc ­ The ad hoc approach specifies no predetermined method.

4. C as a structured language lends itself to the top down approach. The top down method can
produce clean readable code that can easily be maintained.

Top-down approach

 A top­down approach also helps one to clarify the overall structure and operation of the
program before one code the low­level functions.

 The top down method starts with a general description and works towards specifics.

 A good way to design a program is to define exactly what the program is going to do at the
top level.

 Each entry in the list should contain only one functional unit.

 A functional unit can be thought of as a black box that performs a single task.

Modular programming

 Modular programming is a style that adds structure and readability to the program code.

 It may not make much difference on small projects, but as one starts to work on something
bigger it can make the code much easier to read and maintain.

 Structuring the code is a simple task of splitting the program into manageable part so that
each part is self­contained.

 By creating these self­contained modules, one can focus on programming each part.

Functions

 A function is a named, independent section of C code that performs a specific task and
optionally returns a value to the calling program.

 A function is named. Each function has a unique name.

 By using the name in another part of the program, one can execute the statements contained
in the function. This is known as calling the function.

 A function can be called from within any other function.

 A function is independent.

 A function can perform its task without interference from or interfering with other parts of the
program.

Standard Library of C functions

 A collection of reusable functions (code for building data structures, code for performing
math functions and scientific calculations, etc.), which will save C programmers time
especially when working on large programming projects.

 The C Library is part of the ANSI (American National Standard Institute) for the C
Language.

 The C programs can call on a large number of functions from the standard C library.
 These functions perform essential services such as input and output.
 They also provide efficient implementations of frequently used operations.
 Many macros and type definitions accompany these functions and help them to make better

use of the standard C functions.
 Function prototype and data definitions of these functions are written in their respective

header file.
 For example: If you want to use printf() function, the header file < stdio.h > should be

included.
 In C programming you can find the square root by just using sqrt() function which is defined

under header file "math.h".

Some list of the standard C Libraries.
 stdio.h ­ Supports File Input/Output Operations.
 stdlib.h ­ Supports Miscellaneous declarations.
 math.h ­ Supports Definitions used for mathematical calculations.
 string.h ­ Supports string functions.
 time.h ­ Supports system time functions.
 ctype.h ­ functions to handle characters (especially test characters).

C Library math.h functions

1. double ceil(double x): It returns the smallest integer value greater than or equal to x.
2. double floor(double x): It returns the largest integer value less than or equal to x.
3. double fabs(double x): It returns the absolute value of x.
4. double log(double x): It returns the natural logarithm (base­e logarithm) of x.
5. double log10(double x): It returns the common logarithm (base­10 logarithm) of x.
6. double sqrt(double x): It returns the square root of x.
7. double pow(double x, double y): It returns x raised to the power of y i.e. xy.

Example Programs of standard C Libraries

#include<stdio.h>

#include<ctype.h>

#include<math.h>

void main()

{
 int i = ­10, e = 2, d = 10; /* Variables Defining and Assign values */

 float rad = 1.43;

 double d1 = 3.0, d2 = 4.0;

 printf("%d\n", abs(i));

 printf("%f\n", sin(rad));

 printf("%f\n", cos(rad));

 printf("%f\n", exp(e));

 printf("%d\n", log(d));

 printf("%f\n", pow(d1, d2));

}

C Library ctype.h functions

Sr.No. Function Description

1 int isalnum(int c) This function checks whether the passed character is alphanumeric.

2 int isalpha(int c) This function checks whether the passed character is alphabetic.

3 int iscntrl(int c) This function checks whether the passed character is control character.

4 int isdigit(int c) This function checks whether the passed character is decimal digit.

5 int isgraph(int c) This function checks whether the passed character has graphical
representation using locale.

6 int islower(int c) This function checks whether the passed character is lowercase letter.

7 int isprint(int c) This function checks whether the passed character is printable.

8 int ispunct(int c) This function checks whether the passed character is a punctuation
character.

9 int isspace(int c) This function checks whether the passed character is white­space.

10 int isupper(int c) This function checks whether the passed character is an uppercase letter.

11 int isxdigit(int c) This function checks whether the passed character is a hexadecimal digit.

Example : The following program identifies the number of alphabets, digits:

#include <stdio.h>

// Header file containing character functions
#include <ctype.h>

void main()
{
 // String Initialization
 char a[] = "Hi 1234, Welcome to NIELIT Gorakhpur";
 int count_alpha = 0, count_digit = 0;

 for (int i = 0; a[i] != '\0'; i++) {
 // To check the character is alphabet
 if (isalpha(a[i]))
 count_alpha++;

 // To check the character is a digit
 if (isdigit(a[i]))
 count_digit++;
 }
 printf("The number of alphabets are %d\n", count_alpha);
 printf("The number of digits are %d", count_digit);
}

