Programming and Problem Solving through C Language
O Level / A Level

Chapter - 6 : Functions

Approach of Problem Solving

There are three general approaches to writing a program:

1. Top down - In the top down approach one starts with the top-level routine and move down to
the low level routine.

2. Bottom up - The bottom-up approach works in the opposite direction on begins with the
specific routines, build them into progressively more complex structures, and end at the top
level routine.

3. Ad hoc - The ad hoc approach specifies no predetermined method.

4. C as a structured language lends itself to the top down approach. The top down method can
produce clean readable code that can easily be maintained.

Top-down approach
e A top-down approach also helps one to clarify the overall structure and operation of the
program before one code the low-level functions.
e The top down method starts with a general description and works towards specifics.

e A good way to design a program is to define exactly what the program is going to do at the
top level.

e Each entry in the list should contain only one functional unit.
e A functional unit can be thought of as a black box that performs a single task.

Modular programming

e Modular programming is a style that adds structure and readability to the program code.

e It may not make much difference on small projects, but as one starts to work on something
bigger it can make the code much easier to read and maintain.

e Structuring the code is a simple task of splitting the program into manageable part so that
each part is self-contained.

e By creating these self-contained modules, one can focus on programming each part.

Functions
e A function is a named, independent section of C code that performs a specific task and
optionally returns a value to the calling program.
e A function is named. Each function has a unique name.

¢ By using the name in another part of the program, one can execute the statements contained
in the function. This is known as calling the function.

A function can be called from within any other function.
A function is independent.

A function can perform its task without interference from or interfering with other parts of the
program.

#include <stdio.h>
void function_name(){ =

¥

int main() {

step 1
function_name();

Standard Library of C functions

A collection of reusable functions (code for building data structures, code for performing
math functions and scientific calculations, etc.), which will save C programmers time
especially when working on large programming projects.

The C Library is part of the ANSI (American National Standard Institute) for the C
Language.

The C programs can call on a large number of functions from the standard C library.

These functions perform essential services such as input and output.

They also provide efficient implementations of frequently used operations.

Many macros and type definitions accompany these functions and help them to make better
use of the standard C functions.

Function prototype and data definitions of these functions are written in their respective
header file.

For example: If you want to use printf() function, the header file < stdio.h > should be
included.

In C programming you can find the square root by just using sqrt() function which is defined
under header file "math.h".

Some list of the standard C Libraries.

stdio.h - Supports File Input/Output Operations.

stdlib.h - Supports Miscellaneous declarations.

math.h - Supports Definitions used for mathematical calculations.
string.h - Supports string functions.

time.h - Supports system time functions.

ctype.h - functions to handle characters (especially test characters).

C Library math.h functions

double ceil(double x): It returns the smallest integer value greater than or equal to x.
double floor(double x): It returns the largest integer value less than or equal to x.
double fabs(double x): It returns the absolute value of x.

double log(double x): It returns the natural logarithm (base-¢ logarithm) of x.
double log10(double x): It returns the common logarithm (base-10 logarithm) of x.
double sqrt(double x): It returns the square root of x.

double pow(double x, double y): It returns x raised to the power of y i.e. xy.

AR o el

Example Programs of standard C Libraries

#include<stdio.h>
#include<ctype.h>
#include<math.h>

void main()

{
inti=-10,e=2,d=10; /* Variables Defining and Assign values */

float rad = 1.43;
double d1 = 3.0, d2 =4.0;

printf("%d\n", abs(i));

printf("%f\n", sin(rad));

printf("%f\n", cos(rad));

printf("%f\n", exp(e));

printf("%d\n", log(d));

printf("%f\n", pow(dl, d2));
}

Use of Library Function : To Find Square root

#include <stdio.h >

#include <math.h>

intmain{){

float num,root;

printf("Enter a number to find square root.");

scanf(" %™ &num);

root=sqrt(num); /* Computes the square root of num and stores in root. */
printf("Square root of %.2f=%.2f" num, root);

return O;

¥

C Library ctype.h functions

Sr.No. Function Description

1 int isalnum(int ¢) [This function checks whether the passed character is alphanumeric.

2 int isalpha(int ¢) |This function checks whether the passed character is alphabetic.

3 int iscntrl(int ¢) [This function checks whether the passed character is control character.
4 int isdigit(int ¢) |This function checks whether the passed character is decimal digit.

5 int isgraph(int ¢) [This function checks whether the passed character has graphical

representation using locale.

6 int islower(int ¢) |This function checks whether the passed character is lowercase letter.

7 int isprint(int ¢) |This function checks whether the passed character is printable.

8 int ispunct(int ¢) |This function checks whether the passed character is a punctuation
character.

9 int isspace(int ¢) [This function checks whether the passed character is white-space.

10 int isupper(int ¢) [This function checks whether the passed character is an uppercase letter.

11 int isxdigit(int ¢) |This function checks whether the passed character is a hexadecimal digit.

Example : The following program identifies the number of alphabets, digits:
#include <stdio.h>

// Header file containing character functions
#include <ctype.h>

void main()

{

// String Initialization
char a[] ="Hi 1234, Welcome to NIELIT Gorakhpur";
int count_alpha = 0, count_digit = 0;

for (int i = 0; a[i] '="0"; i++) {
// ' To check the character is alphabet
if (isalpha(a[i]))
count_alpha++;

// ' To check the character is a digit

if (isdigit(a[i]))
count_digit++;
}

printf("The number of alphabets are %d\n", count alpha);
printf("The number of digits are %d", count digit);

