

Programming and Problem Solving through C Language
O Level / A Level

Chapter - 10 : Pointers

Insertion into a Linked List

Adding an Element to the Beginning of a List

 If the head pointer is NULL, the list is empty, and the new element will be its only member.

 If the head pointer is not NULL, the list already contains one or more elements.

 In either case, however, the procedure for adding a new element to the start of the list is the
same:

 Create an instance of the structure, allocating memory space using malloc() or calloc().

 Set the next pointer of the new element to the current value of the head pointer.

 This will be NULL if the list is empty, or the address of the current first element otherwise.

 Make the head pointer point to the new element.

new =(struct node *) malloc(sizeof(struct node));

new->next = head;

head=new;

Adding an Element to the End of the List

 To add an element to the end of a linked list, one needs to start at the head pointer and go
through the list until one finds the last element.

 Create an instance of the structure, allocating memory space using malloc().

 Set the next pointer in the last element to point to the new element (whose address is
returned by malloc()).

 Set the next pointer in the new element to NULL to signal that it is the last item in the list.

struct node *current;

current=head;

while(current -> next != NULL)

 current=current -> next;

new=(struct node*)malloc(sizeof(struct node));

current->next =new;

new->next=NULL;

Deletion from a Linked
 Deleting an element from

 The exact process depends

 To delete the first element,

 To delete the last element,

 To delete any other element,
to point to the element

 The code to delete the

head = head->next

The code to delete the last element and the element in the middle of the list

struct node *current1 , *current2;

current1=head;

current2=current1

while(current2

{ current1=current2;

current2 = current1

}

current1->next=NULL;

if (head==current1)

 head=NULL;

> next != NULL)

> next;

=(struct node*)malloc(sizeof(struct node));

 List
from a linked list is a simple matter of manipulating

depends on where in the list the element is located:

element, set the head pointer to point to the second

element, set the next pointer of the next-to-last element

element, set the next pointer of the element before
element after the one being deleted.

the first element in a linked list:

head->next;

The code to delete the last element and the element in the middle of the list

struct node *current1 , *current2;

current1=head;

current2=current1->next;

while(current2->next != NULL)

current1=current2;

current2 = current1->next;

>next=NULL;

if (head==current1)

head=NULL;

manipulating pointers.

located:

second element in the list.

element to NULL.

before the one being deleted

The code to delete the last element and the element in the middle of the list

The code to delete the last element and the element in the middle of the list

struct node *current1 , *current2;

current2=current1->next;

current1->next= current2->next;

