
 Programming and Problem Solving through C Language
O Level / A Level
 Chapter - 9 : Pointers

Dynamic Memory Allocation

 In general, there are two types of storages available for variables. They are
1. Stack and
2. Heap memory storages. The stack memory is permanent storage area where the ordinary variables can be stored.

The heap memory is the free memory area available in the main memory of the computer
which will be used for dynamic memory allocation. In C, there exists a set of built-in functions which are used to allocate memory dynamically
to the derived data types like arrays, structures and unions. Some of the important functions are:

1. malloc ()
2. calloc () and
3. free () To use these functions, we need to include the alloc.h or stdlib.h header file.

Comparison between Static and Dynamic Memory Allocation

Static Memory Allocation Dynamic Memory Allocation
1. This memory is allocated at compile

time.
This memory is allocated at run time.

2. Memory allocation can not be modified
while executing program.

Memory allocation can be changed while
executing program.

3. Used in an array. Used in a linked list.
4. It is fast and saves running time. It is a bit slow.
5. It allocates memory from stack. It allocates memory from heap.
6. Allocated memory stays till the end of

program.
Memory can be allocated at any time and
can be released at any time.

7. It is less efficient than a Dynamic
allocation strategy.

It is more efficient than a Static
allocation strategy.

8. Implementation is simple. Implementation is complicated.
9. Example:

 int i;
 float j;

Example:
p = malloc(sizeof(int));

malloc ()
 This function allocates single block for memory. The malloc() function does not initialize the allocated memory by default. So it contains the

garbage value by default. The general syntax of the malloc () function is
pointer variable = (datatype *) malloc (no. of bytes to be allocated);

Example
int *x, n;
x=(int *) malloc(n * sizeof (int));

 “x” is the pointer variable of int data type and
“n” is an int type variable which can hold the value of the size of the array to be read-in.

The malloc() function allocates a single contiguous memory of “n” locations of int type for the
pointer variable “x”, such that “x” can become like an array of “n” int values, and the memory
location address of the first element of the array is stored in “x”.

Program – To find the sum of n elements entered by user. Use the dynamic memory to store

the data and malloc () function.
 #include<stdio.h>

#include<alloc.h>
#include<stdlib.h>
void main()
{
 int n,i, *ptr, sum=0;
 printf("Enter number of Elements : ");
 scanf("%d", &n); ptr=(int*) malloc(n * sizeof(int))); if(ptr==NULL)
 {
 printf("Error ! Memory not allocated.");
 exit(0);
 } printf("Enter Elements of Array: "");
 for(i=0; i<n ; i++)
 {
 scanf("%d", &ptr[i]);
 sum=sum+ptr[i];
 }
 printf("Sum = %d", sum);
}

calloc()
 This function allocates the multiple blocks for memory.
 The calloc() function initialize the allocated memory.
 The general syntax of the calloc () function is

pointer variable = (datatype *) calloc (no. of location, size of each location);

Example

int *x, n;
x = (int *) calloc(n, sizeof(int));

“x” is the pointer variable of int data type and
“n” is an int type variable which can hold the value of the size of the array to be read-in.

 The calloc() function allocates a number of blocks of memory in contiguous form and not as a
single contiguous block of memory allocated by malloc() function.

Program – To find the sum of n elements entered by user. Use the dynamic memory to store

the data and calloc () function.
 #include<stdio.h>

#include<alloc.h>
#include<stdlib.h>
void main()
{
 int n,i, *ptr, sum=0;
 printf("Enter number of Elements : ");
 scanf("%d", &n); ptr=(int*) calloc(n , sizeof(int))); if(ptr==NULL)
 {
 printf("Error ! Memory not allocated.");
 exit(0);
 } printf("Enter Elements of Array: "");
 for(i=0; i<n ; i++)
 {
 scanf("%d", &ptr[i]);
 sum=sum+ptr[i];
 }
 printf("Sum = %d", sum);
}

Comparison between malloc () and calloc () functions

 malloc () calloc ()
1. It allocates single contiguous block of memory

only.
It allocates number of blocks of memory in
contiguous form.

2. Memory allocation is not initialized, by default. Memory allocation is initialized, by default.
3. It is used to allocate memory for basic data types

(like int, char, float and double).
It is used to allocate memory for derived data
types (like arrays, structures and unions).

 free()
 Dynamically allocated memory with either calloc() or malloc() does not get return on its own. The programmer must use free() explicitly to release space.

 Syntax of free()
free(ptr);

This statement causes the space in memory pointer by ptr to be deallocated

Example

#include<stdio.h>
#include<alloc.h>
#include<stdlib.h>
void main()
{
 int n,i, *ptr, sum=0;
 printf("Enter number of Elements : ");
 scanf("%d", &n);
 ptr=(int*) malloc(n * sizeof(int))); if(ptr==NULL)
 {
 printf("Error ! Memory not allocated.");
 exit(0);
 } free(ptr); if(ptr==NULL)
 {
 printf("Error ! Memory not allocated.");
 exit(0);
 }
}

