

Programming and Problem Solving through C Language
O Level / A Level

Chapter - 8 : Structures and Unions

Unions
 A union is declared and used in the same ways that a structure.
 Unions are defined and declared in the same fashion as structures.
 In unions, all the members share the space which is according to the space requirement of

the largest member.
 The union can hold only one value at a time.
 A union can be initialized on its declaration.
 Because only one member can be used at a time, only one can be initialized.
 To avoid confusion, only the first member of the union can be initialized.

Defining of Union
 A union has to defined, before it can be used.
 The syntax of defining a structure is

union <union_name>
{
 <data_type> <variable_name>;
 <data_type> <variable_name>;
 ………….
 <data_type> <variable_name>;
} ;

Example
To define a simple union of a char variable and an integer variable

 union shared
 { char c;
 int i;
 } ;

 This union, shared, can be used to create instances of a union that can hold either a
character value(c) or an integer value(i).

Union Data Type
 A union is a user defined data type like structure.
 The union groups logically related variables into a single unit.
 The union data type allocates the space equal to space needed to hold the largest data

member of union.
 The union allows different types of variable to share same space in memory.
 There is no other difference between structure and union than internal difference.
 The method to declare, use and access the union is same as structure.

Accessing Union Members
 Individual union members can be used in the same way that structure members can be used

by using the member dot operator (.).
 Only one union member should be accessed at a time, as different variable share same space

in memory.

Example
 union shared

{ char c;

 int i;

};

shared.c =’a’;

shared.d=1;

In this case, value assignment to member variable (d) overwrites the member
variable(c).

Difference between Structures & Union

 The memory occupied by structure variable is the sum of sizes of all the members but
memory occupied by union variable is equal to space hold by the largest data member of a
union.

 In the structure all the members can be accessed at any point of time but in union only one
of union member can be accessed at any given time.

Example
#include<stdio.h>

union job
{ char name[32];
 float salary;
 int worker_no;
} u;

struct job1
{ char name[32];
 float salary;
 int worker_no;
} s;

void main()
{ printf("size of union = %d", sizeof(u));
 printf("\nsize of structure = %d", sizeof(s));
}

output

size of union = 32
size of structure = 40

Difference between Structure and Union

Structure Union

1. It can be defined using struct keyword. It can be defined using a union keyword.

2. Every member within structure is assigned
a unique memory location.

In union, a memory location is shared by all
the data members.

3. Changing the value of one data member
will not affect other data members in
structure.

Changing the value of one data member will
change the value of other data members in
union.

4. It allows initializing several members at
once.

It allows initializing only the first member of
union.

5. The total size of the structure is the sum of
the size of every data member.

The total size of the union is the size of the
largest data member.

6. It is used for storing various data types. It is used for storing one of the many data
types that are available.

7. It reserves space for each and every
member separately.

It reserves space for a member having the
highest size.

8. Any member can be retrieve at a time. Only one member can be retrieve at a time.

9. It allows dynamic array as member. It does not allows dynamic array as member.

Nested Structure and Union

 A structure can have nested union as a member.
 A union can have a nested structure as a member.
 A union can also have a nested union as a member.

Example.

 union shared

{ char c;

 int i;

};

 struct ABC

 { int x;
union shared y;

 };

 struct shared

{ char c;

 int i;

};

 union ABC

 { int x;
struct shared y;

 };

