
 Programming and Problem Solving through C Language
O Level / A Level
 Chapter - 11 : File Processing

Formatted File Input and Output
 Formatted file input/output deals with text and numeric data that is formatted in a specific way.  It is directly analogous to formatted keyboard input and screen output done with the printf() and

scanf() functions.

Formatted File Output
 Formatted file output is done with the library function fprintf().  The prototype of fprintf() is in the header file STDIO.H, and it reads as follows:

int fprintf(FILE *fp, char *fmt, ...);
 The first argument is a pointer to type FILE.  To write data to a particular disk file, pass the pointer that was returned when the file was

opened with fopen().  The second argument is the format string.  The format string used by fprintf() follows exactly the same rules as printf().  In other words, in addition to the file pointer and the format string arguments, fprintf() takes
zero, one, or more additional arguments.  This is just like printf(). These arguments are the names of the variables to be output to the
specified stream.  Remember, fprintf() works just like printf(), except that it sends its output to the stream
specified in the argument list.

Formatted File Input
 For formatted file input, use the fscanf() library function, which is used like scanf() , except that

input comes from a specified stream instead of from stdin.  The prototype for fscanf() is:
int fscanf(FILE *fp, const char *fmt, ...);

 The argument fp is the pointer to type FILE returned by fopen(), and fmt is a pointer to the
format string that specifies how fscanf() is to read the input.  The components of the format string are the same as for scanf().  Finally, the ellipses (...) indicate one or more additional arguments, the addresses of the
variables where fscanf() is to assign the input.

Example :- Program to write the rollno , name , marks of 3 subject of 3 students in the file.

#include<stdio.h>
void main()
{
 FILE *fp;

 int rollno,
 char name[30];
 int m1,m2,m3;

 fp=fopen("Stud.txt","w");

 printf("Enter the RollNo Name M1 M2 M3");
 scanf("%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 fprint(fp, "%d %s %d %d %d\n", rollno, name , m1, m2, m3);

 printf("Enter the RollNo Name M1 M2 M3");
 scanf("%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 fprint(fp, "%d %s %d %d %d\n", rollno, name , m1, m2, m3);

 printf("Enter the RollNo Name M1 M2 M3");
 scanf("%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 fprint(fp, "%d %s %d %d %d\n", rollno, name , m1, m2, m3);

 fclos(fp);
}

Program to read data from file print to the screen.
#include<stdio.h>
 void main()
{
 FILE *fp;
 int rollno,
 char name[30];
 int m1,m2,m3;
 fp=fopen("Stud.txt","r");
 while(1)
 {
 fscanf(fp, "%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 if (feof(fp)) break;
 printf("%d %s %d %d %d\n", rollno, name , m1, m2, m3);
 }
 fclos(fp);
}

Direct File Input and Output
 The direct file I/O most often when one has to save data to be read later by the same or a

different C program.  Direct I/O is used only with binary mode files.  With direct output, blocks of data are written from memory to disk.  Direct input reverses the process: A block of data is read from a disk file into memory.  For example, a single direct output function call can write an entire array of type double to disk,
and a single direct input function call can read the entire array from disk back into memory.  The direct I/O functions are fread() and fwrite().

The fwrite() Function
 The fwrite() library function writes a block of data from memory to a binary mode file.  Its prototype in STDIO.H is: int fwrite(void *buf, int size, int count, FILE *fp);  The argument buf is a pointer to the region of memory holding the data to be written to the file.  The pointer type is void; it can be a pointer to anything.  The argument size specifies the size, in bytes, of the individual data items, and count specifies

the number of items to be written.  The argument fp is, of course, the pointer to type FILE, returned by fopen() when the file was
opened.  The fwrite() function returns the number of items written on success; if the value returned is
less than count, it means that an error has occurred.

Example

#include<stdio.h>
void main()
{
 FILE *fp;

 char name[30]="Ajay Kumar";

 fp=fopen("Stud.txt","wb");

 fwrite(str, sizeof(str), 1, fp);

 fclos(fp);
}

The fread() Function
 The fread() library function reads a block of data from a binary mode file into memory.  Its prototype in STDIO.H is: int fread(void *buf, int size, int count, FILE *fp);  The argument buf is a pointer to the region of memory that receives the data read from the file.  As with fwrite(), the pointer type is void.  The argument size specifies the size, in bytes, of the individual data items being read, and count

specifies the number of items to read.  Note how these arguments parallel the arguments used by fwrite().  Again, the sizeof() operator is typically used to provide the size argument.

 The argument fp is the pointer to type FILE that was returned by fopen() when the file was
opened.  The fread() function returns the number of items read; This can be less than count if end-of-file
was reached or an error occurred.

Example

#include<stdio.h>

void main()
{
 FILE *fp;

 char name[30];

 fp=fopen("Stud.txt","rb");

 fread(str, 30 , 1, fp);

 printf(("%s", str);

 fclos(fp);
}

