
 Programming and Problem Solving through C Language
O Level / A Level
 Chapter - 11 : File Processing

Formatted File Input and Output
 Formatted file input/output deals with text and numeric data that is formatted in a specific way. It is directly analogous to formatted keyboard input and screen output done with the printf() and

scanf() functions.

Formatted File Output
 Formatted file output is done with the library function fprintf(). The prototype of fprintf() is in the header file STDIO.H, and it reads as follows:

int fprintf(FILE *fp, char *fmt, ...);
 The first argument is a pointer to type FILE. To write data to a particular disk file, pass the pointer that was returned when the file was

opened with fopen(). The second argument is the format string. The format string used by fprintf() follows exactly the same rules as printf(). In other words, in addition to the file pointer and the format string arguments, fprintf() takes
zero, one, or more additional arguments. This is just like printf(). These arguments are the names of the variables to be output to the
specified stream. Remember, fprintf() works just like printf(), except that it sends its output to the stream
specified in the argument list.

Formatted File Input
 For formatted file input, use the fscanf() library function, which is used like scanf() , except that

input comes from a specified stream instead of from stdin. The prototype for fscanf() is:
int fscanf(FILE *fp, const char *fmt, ...);

 The argument fp is the pointer to type FILE returned by fopen(), and fmt is a pointer to the
format string that specifies how fscanf() is to read the input. The components of the format string are the same as for scanf(). Finally, the ellipses (...) indicate one or more additional arguments, the addresses of the
variables where fscanf() is to assign the input.

Example :- Program to write the rollno , name , marks of 3 subject of 3 students in the file.

#include<stdio.h>
void main()
{
 FILE *fp;

 int rollno,
 char name[30];
 int m1,m2,m3;

 fp=fopen("Stud.txt","w");

 printf("Enter the RollNo Name M1 M2 M3");
 scanf("%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 fprint(fp, "%d %s %d %d %d\n", rollno, name , m1, m2, m3);

 printf("Enter the RollNo Name M1 M2 M3");
 scanf("%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 fprint(fp, "%d %s %d %d %d\n", rollno, name , m1, m2, m3);

 printf("Enter the RollNo Name M1 M2 M3");
 scanf("%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 fprint(fp, "%d %s %d %d %d\n", rollno, name , m1, m2, m3);

 fclos(fp);
}

Program to read data from file print to the screen.
#include<stdio.h>
 void main()
{
 FILE *fp;
 int rollno,
 char name[30];
 int m1,m2,m3;
 fp=fopen("Stud.txt","r");
 while(1)
 {
 fscanf(fp, "%d %s %d %d %d", &rollno, name , &m1, &m2, &m3);
 if (feof(fp)) break;
 printf("%d %s %d %d %d\n", rollno, name , m1, m2, m3);
 }
 fclos(fp);
}

Direct File Input and Output
 The direct file I/O most often when one has to save data to be read later by the same or a

different C program. Direct I/O is used only with binary mode files. With direct output, blocks of data are written from memory to disk. Direct input reverses the process: A block of data is read from a disk file into memory. For example, a single direct output function call can write an entire array of type double to disk,
and a single direct input function call can read the entire array from disk back into memory. The direct I/O functions are fread() and fwrite().

The fwrite() Function
 The fwrite() library function writes a block of data from memory to a binary mode file. Its prototype in STDIO.H is: int fwrite(void *buf, int size, int count, FILE *fp); The argument buf is a pointer to the region of memory holding the data to be written to the file. The pointer type is void; it can be a pointer to anything. The argument size specifies the size, in bytes, of the individual data items, and count specifies

the number of items to be written. The argument fp is, of course, the pointer to type FILE, returned by fopen() when the file was
opened. The fwrite() function returns the number of items written on success; if the value returned is
less than count, it means that an error has occurred.

Example

#include<stdio.h>
void main()
{
 FILE *fp;

 char name[30]="Ajay Kumar";

 fp=fopen("Stud.txt","wb");

 fwrite(str, sizeof(str), 1, fp);

 fclos(fp);
}

The fread() Function
 The fread() library function reads a block of data from a binary mode file into memory. Its prototype in STDIO.H is: int fread(void *buf, int size, int count, FILE *fp); The argument buf is a pointer to the region of memory that receives the data read from the file. As with fwrite(), the pointer type is void. The argument size specifies the size, in bytes, of the individual data items being read, and count

specifies the number of items to read. Note how these arguments parallel the arguments used by fwrite(). Again, the sizeof() operator is typically used to provide the size argument.

 The argument fp is the pointer to type FILE that was returned by fopen() when the file was
opened. The fread() function returns the number of items read; This can be less than count if end-of-file
was reached or an error occurred.

Example

#include<stdio.h>

void main()
{
 FILE *fp;

 char name[30];

 fp=fopen("Stud.txt","rb");

 fread(str, 30 , 1, fp);

 printf(("%s", str);

 fclos(fp);
}

