National Institute of Electronics & Information Technology (NIELIT), Gorakhpur राष्ट्रीय इलेक्ट्रॉनिकी एवं सूचना प्रौद्योगिकी संस्थान ,गोरखपुर

Course Name: A Level (1st Sem) Subject : Introduction to DBMS

Topic: **DB Normalization – Lossless Join Decomposition** Date: **29-May-2020**

(Part 12)

Database Normalization – Lossless Join Decomposition

Suppose a relational schema R is decomposed into two relations R1 and R2, then this decomposition is considered as **lossless decomposition** if there is no loss of information after decomposition. This property is also knows as **lossless join decomposition**.

More technically, we can say that the result of natural join of R1 and R2 are same as R i.e. no extra or less tuple is generated in natural join of R1 and R2.

$$\pi_{\text{Attributes}}(R1) \bowtie \pi_{\text{Attributes}}(R2) = \pi_{\text{Attributes}}(R)$$

It is mandatory property and must always hold while decomposing of table.

The decomposition of R into R1 and R2 always will be lossless, if and only if, all the following three conditions holds true:

- 1. Attribute (R1) U Attribute (R2) = Attribute (R)
- 2. Attribute (R1) \cap Attribute (R2) $\neq \emptyset$
- 3. The common attribute(s) between R1 and R2 must be candidate key either in R1 or in R2 i.e.

Attribute (R1) \cap Attribute (R2) \longrightarrow Attribute (R)

Attribute (R1) \cap Attribute (R2) \longrightarrow Attribute (R)

If the decomposition does not follow above three conditions then it is called **lossy** decomposition or lossy-join decomposition.

National Institute of Electronics & Information Technology (NIELIT), Gorakhpur राष्ट्रीय इलेक्ट्रॉनिकी एवं सूचना प्रौद्योगिकी संस्थान ,गोरखपुर

Consider a relation **R** (emp_id, emp_name, emp_dob, dept_id, dept_name, dept_location)

Now, it is divided into:

R1 (emp_id, emp_name, emp_dob, dept_id)

R2 (dept_id, dept_name, dept_locaion)

If it is lossless join decomposition then it has to follow all the above mentioned three conditions:

- 1- Union of attributes R1 and attributes R2 is equal to attributes of R
- 2- The intersection of attributes R1 and attributes R2 is not null. It is dept_id.
- 3- The common attribute between R1 and R2 (dept_id) is the candidate key in R2.

dept_id → dept_id, dept_name, dept_location

Therefore, It concludes that above decomposition of R1(emp_id, emp_name, emp_dob, dept_id) and R2 (dept_id, dept_name, dept_locaion) is lossless join decomposition.

Exercise:

A. Suppose R (v w x y z) and set of FDs

F: {
$$z \rightarrow y$$
,
 $y \rightarrow z$,
 $x \rightarrow yv$,
 $vw \rightarrow x$ }

Which of the following decomposition is lossless, justify your answer:

- 1. R1(v w x), R2(x y z)
- 2. R1(v w), R2(y z)
- 3. R1(v w x), R2(y z)
- 4. R1(v w), R2(w x y z)

B. Suppose a relation R

A	В	С	D	E
p	111	6	a	X
q	134	5	b	y
p	338	6	С	Z
r	463	4	d	W

Which of the following decomposition is lossless, justify your answer:

- 1. R1(A B), R2(C D)
- 2. R1(A B C), R2(D E)
- 3. R1(A B C), R2(C D E)
- 4. R1(A B C D), R2(A C D E)
- 5. R1(A B C D), R2(D E)
- 6. R1(A B C), R2(B C D), R3(D E)

