Database Normalization – Exercise Practices on BCNF

Suppose a following relational schema R:

<table>
<thead>
<tr>
<th>stu_id</th>
<th>subject</th>
<th>prof</th>
<th>prof_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>s101</td>
<td>Python</td>
<td>Sumit Sharma</td>
<td>p1</td>
</tr>
<tr>
<td>s101</td>
<td>Java</td>
<td>R. Chauhan</td>
<td>p2</td>
</tr>
<tr>
<td>s102</td>
<td>Python</td>
<td>Punit</td>
<td>p3</td>
</tr>
<tr>
<td>s103</td>
<td>C#</td>
<td>Simmi</td>
<td>p4</td>
</tr>
<tr>
<td>s104</td>
<td>Python</td>
<td>Sumit Sharma</td>
<td>p1</td>
</tr>
</tbody>
</table>

- One student can enrol multiple subjects.
- For each subject, a professor is assigned.
- There can be multiple professor teaching same subjects.

Identify functional dependency in above relation and check out this table is in BCNF or not? if not, decompose it in BCNF.

Solution:

Based on the descriptions and value given, following functional dependencies have been identified:

prof_id → prof, subject

stud_id, subject → prof, prof_id
There are two candidate key in above table i.e.

1. (stud_id, subject)
2. (stud_id, prof_id)

(stud_id subject)⁺ = stud_id, subject, prof, prof_id
(stud_id prof_id)⁺ = stud_id, subject, prof, prof_id

Closure of these two has all the attributes of R.

Prime attributes: stud_id, subject, prof_id
Non prime attributes: prof

The functional dependency prof_id → prof, subject is not following rule of BCNF because prof_id is not candidate key.

Therefore table needs to be decomposed into:

R1 (prof_id, prof, subject)
R2 (stu_id, prof_id)

Now R1, R2 are normalized into BCNF.

See how data redundancy has been removed by decomposing it into BCNF.
Exercise:
Suppose R (A B C D E F) and set of FDs

\[F : \{ A \rightarrow BCD, \]
\[BC \rightarrow DE, \]
\[B \rightarrow D, \]
\[D \rightarrow A \} \]

Do following:
1. Compute \(B^+ \).
2. Find candidate key.
3. Compute canonical cover.
4. Give 3NF decomposition
5. Give BCNF decomposition.