

Course Name: A Level (1st Sem) Topic: FD – Equivalence of Functional Dependencies (Part 8)

Subject : Introduction to DBMS Date: 28-Apr-2020

Equivalence of Functional Dependencies

If there are given two different sets of functional dependencies for a relation, then these two may or may not be equivalent. Suppose F & G are the two sets of functional dependencies for a relational schema R, then following four cases may possible:

Steps to check equivalence of two different set of functional dependencies

Suppose F & G are two set of FDs in a relational schema R:

Step 1: Find the closure of attributes that are determinant attribute (left side attributes) in FD set F, <u>but important point is that the closures are supposed to calculate using FDs given in set G.</u>

Step 2: Now check for each FD in F, the determinant and dependent attribute in FD set F are same as calculated in closure. If same, and since closure is calculated using FD set G, it concludes that F is subset of G ($F \subseteq G$) because G can determine all those attributes that are determined by F. If not same F $\not\subseteq G$.

Step 3: Likewise calculate whether $G \subseteq F$ or not

Using above, one of the following will come:

- I. $F \subseteq G$ but $G \not\subseteq F$
- II. $G \subseteq F$ but $F \not\subseteq G$
- III. $F \subseteq G$ and $G \subseteq F$ i.e. F = G
- IV. $F \not\subseteq G$ and $G \not\subseteq F$ i.e. $F \neq G$

Q 1. Suppose, a relational schema R (A, B, C) and set of functional dependencies F and G are as follow:

 $F : \{ A \rightarrow B,$ $G : \{ A \rightarrow BC,$ $B \rightarrow C,$ $B \rightarrow A,$ $C \rightarrow A \}$ $C \rightarrow A \}$

Check the equivalency of functional dependencies F and G.

Solution 1:

Closure of left side attribute in F Using FDs in G	Closure of left side attribute in G Using FDs in F
$A^+ = ABC$	$A^+ = ABC$
$B^+ = BAC$	$B^+ = BCA$
$C^+ = CAB$	$C^+ = CAB$
$F \subseteq G$ because in FD set F:	$G \subseteq F$ because in FD set G
$A \rightarrow B$ and A^+ also have B,	A \rightarrow BC and A ⁺ also have BC
$B \rightarrow C$ and B^+ also have C,	$B \rightarrow A$ and B^+ also have A
$C \rightarrow A$ and C^+ also have A	$C \rightarrow A$ and C^+ also have A
$(A^+, B^+, C^+ are calculated using FD in G)$	$(A^+, B^+, C^+ \text{ are calculated using } FD \text{ in } F)$
Since $F \subseteq G$ and $G \subseteq F$ it means $A = B$	

Q 2. Suppose, a relational schema R (v w x y z) and set of functional dependencies F and G are as follow:

 $F: \{ w \rightarrow x, \qquad G: \{ w \rightarrow xy, \\ wx \rightarrow y, \qquad z \rightarrow wx \}$ $z \rightarrow wy, \\ z \rightarrow v \}$

Check the equivalency of functional dependencies F and G.

Solution 2:

Closure of left side attribute in F Using FDs Closure of left side attribute in G Using FDs in F in G $\mathbf{w}^+ = \mathbf{w}\mathbf{x}\mathbf{y}$ $\mathbf{w}^+ = \mathbf{w} \mathbf{x} \mathbf{y}$ $wx^+ = wxy$ $\mathbf{z}^+ = \mathbf{w}\mathbf{y}\mathbf{v}\mathbf{z}\mathbf{x}$

 $\mathbf{z}^+ = \mathbf{w}\mathbf{x}\mathbf{y}\mathbf{z}$

 $F \not\subseteq G$ because in FD set F:

 $w \rightarrow x$ and w^+ also have x. wx \rightarrow y and wx⁺ also have y, $z \rightarrow wy$ and z^+ also have wy

 $z \rightarrow v$ but z^+ does not have v

 $G \subseteq F$ because in FD set G : $w \rightarrow xy$ and w^+ also have xy $z \rightarrow wx$ and z^+ also have wx

Therefore $\mathbf{F} \not\subseteq \mathbf{G}$ but $\mathbf{G} \subseteq \mathbf{F}$

Exercise:

1. Understand above two problems clearly and then try to solve all the exercises without referring solutions given above.

2. Suppose, a relational schema R (P,Q, R, S) and set of functional dependencies F and G are as follow:

> $F: \{ P \rightarrow Q, \}$ $G: \{ P \rightarrow QR, \}$ $Q \rightarrow R$, $R \rightarrow S$ $R \rightarrow S$

Check the equivalency of functional dependencies F and G.

