

Course Name: A Level (1st Sem) Topic: FD – Exercise Practices on Closure of Attribute Sets (Part 7) Subject : Introduction to DBMS Date: 27-Apr-2020

Q 1. Suppose, a relational schema R (A, B, C, D, E) and set of functional dependencies:

 $F \{ A \rightarrow BC, \\ CD \rightarrow E, \\ B \rightarrow D, \\ E \rightarrow A \}$

Compute CD⁺, E⁺ (closure of attribute set CD, attribute E respectively).

Solution 1: $CD^+ = CD$ Initially result is CD.CDEBecause of functional dependency $CD \rightarrow E$, result includes EACDEBecause of functional dependency $E \rightarrow A$, result includes AABCDEBecause of functional dependency $A \rightarrow BC$, result includes B(C is already present in the result).

Therefore $CD^+ = (A B C D E)$

 E^+ =EInitially result is E.A EA EBecause of functional dependency E \rightarrow AA B C EBecause of functional dependency A \rightarrow B CA B C D EBecause of functional dependency B \rightarrow D

Therefore $\mathbf{E}^+ = (\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E})$

Q 2. Suppose, a relational schema R (A, B, C, D, E, F) and set of functional dependencies: $F \{ A B \rightarrow C,$ BC \rightarrow AD. D → E. $CF \rightarrow B$ } Compute BCF⁺, CD⁺, D⁺. Solution 2: $BCF^+ = BCF$ Initially result is BCF. Because of functional dependency $BC \rightarrow AD$, result ABCDF includes AD. Because of functional dependency $D \rightarrow E$, result ABCDEF includes E. Therefore $BCF^+ = (A B C D E)$ Initially result is CD. \mathbf{CD}^+ = CDCDE Because of functional dependency $D \rightarrow E$, result includes E. Therefore $CD^+ = (CDE)$ \mathbf{D}^+ Initially result is D. = D Because of functional dependency $D \rightarrow E$, result DE includes E.

Therefore $D^+ = (D E)$

National Institute of Electronics & Information Technology (NIELIT), Gorakhpur राष्ट्रीय इलेक्ट्रॉनिकी एवं सूचना प्रौद्योगिकी संस्थान ,गोरखपुर

Q 3. Suppose, a relational schema R (A, B, C, D, E, F, G, H) and set of functional dependencies:

F { A \rightarrow BC, E \rightarrow C, AH \rightarrow D, CD \rightarrow E, D \rightarrow AEH, DH \rightarrow BC }

Compute AE^+ . Is BCD \rightarrow H valid or not?

Solution 3:

AE^+	= A E	Initially result is AE.
	A C E	Because of functional dependency $E \rightarrow C$, result includes C.
	A B C E	Because of functional dependency $A \rightarrow BC$, result includes B (C is already present in the result).

To prove BCD \rightarrow H holds in above relation, (BCD)⁺ must include the attribute H, so

$\mathbf{B}\mathbf{C}\mathbf{D}^{+} = \mathbf{B} \mathbf{C} \mathbf{D}$	Initially result is BCD.
BCDE	Because of functional dependency $CD \rightarrow E$, result includes E.
A B C D E H	Because of functional dependency $D \rightarrow AEH$, result includes EH (A is already present in the result).

Since $BCD^+ = (A B C D E H)$, it proves that $BCD \rightarrow H$ is valid in above relation.

Exercise:

1. Understand all above exercises clearly and then try to solve all the exercises without referring solutions given above.

•••