

Course Name: A Level (1st Sem) Topic: FD – Closure of Set of FDs (Part 5) Subject : Introduction to DBMS Date: 23-Apr-2020

Closure of Set of Functional Dependencies

Let F be a set of functional dependencies on a relational schema R, the closure of F denoted by F^+ is the set of all functional dependencies logically implied by F. Given F, we can define F^+ directly from the formal definition of functional dependency.

We can use Armstrong' axioms and other rules of inference to find logically implied functional dependencies (F^+) from given set of FDs (F).

Q. Suppose, we are given a relational schema R (A, B, C, G, H, I) and set of functional dependency F:

 $F \{ A \rightarrow B, \\ A \rightarrow C, \\ CG \rightarrow H, \\ CG \rightarrow I, \\ B \rightarrow H \}$

Compute the closure of above given set F. (i.e. what others FD can be derived?)

Solution:

From above given set F of functional dependencies, we can conclude following more functional dependencies set (F+):

• A →H

[Using transitivity properly of Armstrong's axioms, It derives $\mathbf{A} \rightarrow \mathbf{H}$ since

 $A \rightarrow B$ and $B \rightarrow H$ hold in the relation]

• $CG \rightarrow HI$

[Since $CG \rightarrow H$ and $CG \rightarrow I$ hold in the relation, It derives $CG \rightarrow HI$ using Union rule]

• AG \rightarrow I

[Since $A \rightarrow C$ and $CG \rightarrow I$ hold in the relation, It derives $AG \rightarrow I$ using **Pseudo Transitivity rule**]

• AG \rightarrow H

[Since $A \rightarrow C$ and $CG \rightarrow H$ hold in the relation, It derives $AG \rightarrow H$ using **Pseudo Transitivity rule**]

Therefore $F+ \{ A \rightarrow H, CG \rightarrow HI, AG \rightarrow I, AG \rightarrow H \}$

Exercise:

- **1.** Proof the Pseudo Transitivity rule? How it can be derived using Armstrong's axioms?
- 2. Compute the closure (F⁺) of the following set F of functional dependencies for relational schema r (A, B, C, D, E):

```
A \rightarrow BCCD \rightarrow EB \rightarrow DE \rightarrow A
```